configs/archive/sthome-ut8_bak.yml

4109 lines
143 KiB
YAML

packages:
- !include common/wifi.yaml
- !include common/canbus.yaml
- !include common/geyser.yaml
- !include common/felicityinverter.yaml
substitutions:
name: sthome-ut8
friendly_name: "sthome-ut8"
MAX_SCHOOL_HOLIDAY_PERIODS: 12
esphome:
name: "${name}"
friendly_name: "${friendly_name}"
platformio_options:
build_flags: -fexceptions
build_unflags: -fno-exceptions
includes:
- source # copies folder with files to relevant to be included in esphome compile
- <source/solar/cb_frame.h> # angle brackets ensure file is included above globals in main.cpp. Make sure to use include GUARDS in the file to prevent double inclusion
- <source/solar/cbf_store.h>
- <source/solar/cbf_pylon.h>
- <source/solar/cbf_store_pylon.h>
- <source/solar/cbf_sthome.h>
- <source/solar/cbf_store_sthome.h>
- <source/solar/cbf_cache.h>
on_boot:
- priority: 600 # This is where most sensors are set up (higher number means higher priority)
then:
- lambda: |-
id(geyser_relay).turn_off();
id(pool_relay).turn_off();
id(timer_start) = 0;
id(can1_msgctr) = 0;
id(can2_msgctr) = 0;
id(g_cb_request_queue) = std::queue< std::set<uint32_t> >();
id(time_synched) = false;
id(init_fixed_public_holidays).execute();
id(init_schedule).execute();
- uart.write:
id: inv_uart1
data: [0x0D, 0x0A]
- uart.write:
id: inv_uart2
data: [0x0D, 0x0A]
# - priority: 200 # Network connections like MQTT/native API are set up at this priority.
# then:
# - lambda: |-
- priority: 400
then:
- switch.turn_on: level_shifter_output_enable
globals:
- id: g_inv1_power_flow
type: uint16_t
restore_value: no
initial_value: '0'
- id: g_inv2_power_flow
type: uint16_t
restore_value: no
initial_value: '0'
- id: time_synched
type: bool
restore_value: no
initial_value: 'false'
- id: geyser_relay_status
type: bool
restore_value: yes
initial_value: 'false'
- id: sun_elevation_minimum
type: double
restore_value: yes
initial_value: '30.0'
- id: thermal_transmittance
type: double
restore_value: yes
initial_value: '1.876' # '1.31' # geyser insulation thermal transmittance in W/m²K
- id: geyser_surface_area
type: double
restore_value: yes
initial_value: '3.088' # in square metres / radius = 0.26m, length = 1.63m
- id: geyser_element_resistance
type: double
restore_value: yes
initial_value: '17.69' # in ohms - 230v / 13A = 17.69 ohm - amounts to 2.99kW at 230v
- id: watermass
type: double
restore_value: yes
initial_value: '300' # 300 litres = 300 kg
- id: geyser_top_bottom_constraint
type: double
restore_value: yes
initial_value: '17' # in °C, difference between top and bottom temperature at which it will start influencing the heat_required calculation
- id: temp_overshoot_allowed
type: double
restore_value: yes
initial_value: '0.25' # switch off geyser if temperature is this value or more above target temperature. This value also acts as top end hysteresis
- id: active_schedule_temperature
type: double
restore_value: yes
initial_value: '50.0'
- id: active_heating_time
type: int
initial_value: '0'
restore_value: yes
- id: estimated_heating_time
type: int
restore_value: no
- id: estimated_heating_overshoot_time
type: int
restore_value: no
- id: g_heat_loss
type: double
initial_value: '0'
restore_value: no
- id: geyser_effective_power
type: double
restore_value: no
- id: heat_monitor_start
type: time_t
initial_value: '0'
restore_value: yes
- id: heat_monitor_end
type: time_t
initial_value: '0'
restore_value: yes
- id: g_heat_gained
type: double
initial_value: '0'
restore_value: yes
- id: last_geyser_top_temperature
type: double
initial_value: '-301' # less than -300 denotes that temperature was not updated yet
restore_value: yes
- id: last_temp_diff
type: double
initial_value: '0'
restore_value: yes
- id: timer_start
type: time_t
initial_value: '0'
restore_value: yes
- id: geyser_day_ind
type: int
initial_value: '0'
restore_value: yes
- id: active_heating_start
type: time_t
initial_value: '1749538816' # 2025-06-10 09:00
restore_value: no
- id: active_heating_end
type: time_t
initial_value: '1749538816' # 2025-06-10 09:00
restore_value: no
- id: active_schedule_period
type: int[2]
initial_value: '{0, 0}'
restore_value: no
- id: g_schedule
type: int[${GEYSER_MODES}][${HEATING_DAY_BLOCKS}][3]
restore_value: no # initialised by script
- id: fixed_public_holidays
type: int[10][2]
restore_value: no # initialised by script
- id: public_holidays
type: int[12][2]
restore_value: no
- id: school_holidays
type: int[${MAX_SCHOOL_HOLIDAY_PERIODS}][2][2] # SCHOOL holiday periods - format for a period: {{start month, start day of month}, {end month, end day of month}}
restore_value: yes
initial_value: '{{{{1, 1}, {1, 14}}, {{3, 28}, {4, 17}}, {{4, 29}, {4, 30}}, {{5, 2}, {5, 2}}, {{6, 28}, {7, 21}}, {{10, 4}, {10, 12}}, {{12, 10}, {12, 31}}, {{0, 0}, {0, 0}}}}'
- id: energy_counters_reset_time
type: time_t
initial_value: '0'
restore_value: yes
- id: can1_msgctr
type: int
restore_value: no
- id: can2_msgctr
type: int
restore_value: no
- id: g_cb_cache # the cache is used to only accept a frame after it has been received a specified number of times within a specified period. this hopefully will iron out spurious corrupted frames
type: solar::cbf_cache
restore_value: no
- id: g_cb_request_queue
type: std::queue< std::set<uint32_t> >
restore_value: no
esp32:
board: esp32dev
framework:
type: esp-idf
# Enable logging
logger:
level: VERBOSE
initial_level: INFO
logs:
canbus: INFO
uart: DEBUG
sensor: INFO
ads1115: INFO
# Enable Home Assistant API
api:
encryption:
key: "lcdZmQW414LxtbHNpPpQkM1AyDnCKEYsGSy2c4TlodU="
ota:
- platform: esphome
password: "0f2e92e0c8764309d5de28191914f0ff"
wifi:
power_save_mode: none
manual_ip:
static_ip: 10.0.2.8
# Enable fallback hotspot (captive portal) in case wifi connection fails
ap:
ssid: "${name} Fallback Hotspot"
password: "h7BEJBrnZKSQ"
captive_portal:
one_wire:
- platform: gpio
pin: GPIO4
id: geyser_temperature_sensors
i2c:
sda: GPIO21
scl: GPIO22
scan: true
id: bus_a
frequency: 10kHz
ads1115:
- address: 0x48
id: ads1115_48
continuous_mode: true
- address: 0x49
id: ads1115_49
continuous_mode: true
- address: 0x4A
id: ads1115_4A
continuous_mode: true
# - address: 0x4B
# id: ads1115_4B
spi:
- id: spi_bus0
clk_pin: GPIO18
mosi_pin: GPIO23
miso_pin: GPIO19
interface: any
uart:
- id: inv_uart1
rx_pin: GPIO16
tx_pin: GPIO17
baud_rate: 2400
stop_bits: 1
parity: NONE
debug:
direction: BOTH
dummy_receiver: false
after:
delimiter: "\r"
sequence:
- lambda: UARTDebug::log_hex(direction, bytes, ',');
- id: inv_uart2
rx_pin: GPIO0
tx_pin: GPIO1
baud_rate: 2400
stop_bits: 1
parity: NONE
debug:
direction: BOTH
dummy_receiver: false
after:
delimiter: "\r"
sequence:
- lambda: UARTDebug::log_hex(direction, bytes, ' ');
sun:
id: sun_sensor
latitude: !secret latitude
longitude: !secret longitude
time:
# - platform: sntp
# timezone: Africa/Johannesburg
# servers:
# - ntp1.meraka.csir.co.za # 146.64.24.58
# - ntp.as3741.net # 196.4.160.4
# - ntp1.inx.net.za # 196.10.52.57
- platform: homeassistant
id: time_source
on_time_sync:
- lambda: |-
id(time_synched) = true;
id(init_holidays).execute(); // we need valid time to calculate holidays
// id(show_schedule).execute(); // for debugging
- logger.log: "Synchronized system clock"
on_time:
# do every year on the first day of the first month at one second after midnight
- seconds: 1
minutes: 0
hours: 0
days_of_month: 1
months: 1
then:
- sensor.integration.reset: yearly_geyser_energy
- sensor.integration.reset: yearly_plugs_energy
- sensor.integration.reset: yearly_mains_energy
- sensor.integration.reset: yearly_lights_energy
- sensor.integration.reset: yearly_generated_energy
- sensor.integration.reset: yearly_house_energy_usage
- sensor.integration.reset: yearly_energy_loss
# do every first day of month at one second after midnight
- seconds: 1
minutes: 0
hours: 0
days_of_month: 1
then:
- sensor.integration.reset: monthly_geyser_energy
- sensor.integration.reset: monthly_plugs_energy
- sensor.integration.reset: monthly_mains_energy
- sensor.integration.reset: monthly_lights_energy
- sensor.integration.reset: monthly_generated_energy
- sensor.integration.reset: monthly_house_energy_usage
- sensor.integration.reset: monthly_energy_loss
# # do every day at one second after midnight
# - seconds: 1
# minutes: 0
# hours: 0
# then:
# - lambda: |-
# id(init_daily_power_counters).execute();
# do every 15 minutes
- seconds: 0
minutes: 10, 25, 40, 55
then:
- lambda: |-
id(record_heat_gained).execute();
# do every second
- seconds: '*'
minutes: '*'
then:
- lambda: |-
id(level_shifter_output_enable).turn_on();
// id(get_ha_settings).execute();
// id(update_power_counters).execute();
id(set_active_schedule).execute();
id(set_active_heating_timers).execute();
id(set_geyser_relay).execute();
id(set_heat_indicators).execute();
//ESP_LOGI("info", "Mains Voltage: %f", id(mains_voltage_adc).state);
//ESP_LOGI("info", "AMP: Ge %.4f, Li: %.4f, Ma %.4f, Pl:%.4f, VOLT: Ma: %.4f, Pl %.4f, A2: %.4f, A3 %.4f, TEMP: %.4f", id(geyser_current).state, id(lights_current).state, id(mains_current).state, id(power_outlets_current).state, id(mains_voltage_adc).state, id(inverter_output_voltage_adc).state, id(adc4A_A2).state, id(adc4A_A3).state, id(geyser_top_temperature).state);
//ESP_LOGI("info", "AMP: Ge %.4f, Li: %.4f, Ma %.4f, Pl:%.4f, VOLT: Ma: %.8f, Pl %.8f, TEMP: %.4f", id(geyser_current).state, id(lights_current).state, id(mains_current).state, id(power_outlets_current).state, id(mains_voltage_adc).state, id(inverter_output_voltage_adc).state, id(geyser_top_temperature).state);
- text_sensor.template.publish:
id: heating_time_text
state: !lambda |-
int seconds = id(active_heating_time);
int days = seconds / (24 * 3600);
seconds = seconds % (24 * 3600);
int hours = seconds / 3600;
seconds = seconds % 3600;
int minutes = seconds / 60;
seconds = seconds % 60;
auto days_str = std::to_string(days);
auto hours_str = std::to_string(hours);
auto minutes_str = std::to_string(minutes);
auto seconds_str = std::to_string(seconds);
return (
(days ? days_str + "d " : "") +
(hours ? hours_str + "h " : "") +
(minutes ? minutes_str + "m " : "") +
(seconds_str + "s")
).c_str();
- text_sensor.template.publish:
id: heating_start_text
state: !lambda |-
auto time_obj = ESPTime::from_epoch_local(id(active_heating_start));
return time_obj.strftime("%Y-%m-%d %H:%M:%S");
- text_sensor.template.publish:
id: heating_end_text
state: !lambda |-
auto time_obj = ESPTime::from_epoch_local(id(active_heating_end));
return time_obj.strftime("%Y-%m-%d %H:%M:%S");
- text_sensor.template.publish:
id: active_schedule_start_text
state: !lambda |-
auto time_obj = ESPTime::from_epoch_local(id(active_schedule_period)[0]);
return time_obj.strftime("%Y-%m-%d %H:%M:%S");
- text_sensor.template.publish:
id: active_schedule_end_text
state: !lambda |-
auto time_obj = ESPTime::from_epoch_local(id(active_schedule_period)[1]);
return time_obj.strftime("%Y-%m-%d %H:%M:%S");
interval:
- interval: 100ms
then:
lambda: |-
using namespace solar;
bool success = false;
if(!id(g_cb_request_queue).empty()) {
auto canid_set = id(g_cb_request_queue).front();
std::set<uint32_t> unhandled_set, failed_set;
for(auto& can_id : canid_set) {
switch(can_id) {
// pylon ids
case cbf_pylon::CB_BATTERY_LIMITS:
id(canbus_send_battery_limits).execute();
break;
case cbf_pylon::CB_BATTERY_STATE:
id(canbus_send_battery_state).execute();
break;
case cbf_pylon::CB_BATTERY_STATUS:
id(canbus_send_battery_status).execute();
break;
case cbf_pylon::CB_BATTERY_FAULT:
id(canbus_send_battery_fault).execute();
break;
case cbf_pylon::CB_BATTERY_REQUEST_FLAGS:
id(canbus_send_battery_request_flags).execute();
break;
case cbf_pylon::CB_BATTERY_MANUFACTURER:
id(canbus_send_battery_manufacturer).execute();
break;
// sthome ids
case cbf_sthome::CB_POWER_MAINS:
id(canbus_send_power_mains).execute();
break;
case cbf_sthome::CB_POWER_INVERTER:
id(canbus_send_power_inverter).execute();
break;
case cbf_sthome::CB_POWER_PLUGS:
id(canbus_send_power_plugs).execute();
break;
case cbf_sthome::CB_POWER_LIGHTS:
id(canbus_send_power_lights).execute();
break;
case cbf_sthome::CB_POWER_GEYSER:
id(canbus_send_power_geyser).execute();
break;
//case cbf_sthome::CB_POWER_POOL:
// id(canbus_send_power_pool).execute();
// break;
case cbf_sthome::CB_POWER_GENERATED:
id(canbus_send_power_generated).execute();
break;
case cbf_sthome::CB_ENERGY_MAINS:
id(canbus_send_energy_mains).execute();
break;
case cbf_sthome::CB_ENERGY_GEYSER:
id(canbus_send_energy_geyser).execute();
break;
//case cbf_sthome::CB_ENERGY_POOL:
// id(canbus_send_energy_pool).execute();
// break;
case cbf_sthome::CB_ENERGY_PLUGS:
id(canbus_send_energy_plugs).execute();
break;
case cbf_sthome::CB_ENERGY_LIGHTS:
id(canbus_send_energy_lights).execute();
break;
case cbf_sthome::CB_ENERGY_HOUSE:
id(canbus_send_energy_house).execute();
break;
case cbf_sthome::CB_ENERGY_GENERATED:
id(canbus_send_energy_generated).execute();
break;
case cbf_sthome::CB_ENERGY_LOSS:
id(canbus_send_energy_loss).execute();
break;
case cbf_sthome::CB_GEYSER_TEMPERATURE_TOP:
id(canbus_send_temperature_top).execute(success);
if(!success) {
failed_set.insert(can_id);
}
break;
case cbf_sthome::CB_GEYSER_TEMPERATURE_BOTTOM:
id(canbus_send_temperature_bottom).execute(success);
if(!success) {
failed_set.insert(can_id);
}
break;
case cbf_sthome::CB_GEYSER_TEMPERATURE_AMBIENT:
id(canbus_send_temperature_ambient).execute(success);
if(!success) {
failed_set.insert(can_id);
}
break;
case cbf_sthome::CB_CANBUS_ID08:
id(canbus_send_heartbeat).execute();
break;
default:
unhandled_set.insert(can_id);
}
}
id(g_cb_request_queue).pop(); // remove from queue
// do remaining can_ids, if any
bool time_isvalid = id(time_source).now().is_valid();
if(time_isvalid) {
for(auto& can_id : unhandled_set) {
switch(can_id) {
case cbf_sthome::CB_CONTROLLER_STATES:
id(canbus_send_controller_states).execute();
break;
case cbf_sthome::CB_GEYSER_HEATING:
id(canbus_send_geyser_heating).execute();
break;
case cbf_sthome::CB_GEYSER_ACTIVE_SCHEDULE:
id(canbus_send_geyser_active_schedule).execute();
break;
default:
ESP_LOGW("Unknown CAN_ID", "CAN_ID: 0x%X. Remote transmission request ignored!", can_id);
break;
}
}
}
else {
// re-insert unhandled can-ids to the back of the queue
id(canbus_add_to_queue).execute(unhandled_set, 5);
}
id(canbus_add_to_queue).execute(failed_set, 5);
}
- interval: ${CB_RETRANSMISSION_INTERVAL}
then:
lambda: |-
using namespace solar;
// we use the cache to handle recently received remote transmission requests. this allows for ironing out invalid (non-repeated) frames
ESP_LOGV("processing RTRs ", "%d publishable request(s) in cache", std::count_if(id(g_cb_cache).cache_map.begin(), id(g_cb_cache).cache_map.end(), [](auto& it) { auto& store = it.second.get_store(); return store.rtr && store.getpublish(); }));
// we have an outer loop to queue 5 blocks of the requested frames to ensure delivery
for(int i = 0; i < ${CB_MAX_RETRANSMISSIONS}; i++) {
std::set<uint32_t> canid_set;
for(auto& kvp : id(g_cb_cache).cache_map) {
const auto& item = kvp.second;
auto& store = item.get_store();
if(store.rtr) {
//ESP_LOGI(store.tag().c_str(), "%s", store.to_string().c_str());
if(store.getpublish()) {
canid_set.insert(store.can_id);
if(i == ${CB_MAX_RETRANSMISSIONS} - 1) {
ESP_LOGI(store.tag().c_str(), "%s", store.to_string().c_str()); // we display once, using opportunity at end of sequence (when publish flag is reset)
store.setpublish(false);
}
}
}
}
id(g_cb_request_queue).push(canid_set);
}
modbus:
- id: modbus1
uart_id: inv_uart1
send_wait_time: 1200ms #250ms
disable_crc: false
role: client
- id: modbus2
uart_id: inv_uart2
send_wait_time: 1200ms #250ms
disable_crc: false
role: server
modbus_controller:
- id: modbus_device1
modbus_id: modbus1
address: 0x01
allow_duplicate_commands: False
command_throttle: 700ms #2022ms
update_interval: 60s #305s
offline_skip_updates: 2
max_cmd_retries: 1
setup_priority: -10
- id: modbus_device2
modbus_id: modbus2
address: 0x01
allow_duplicate_commands: False
command_throttle: 0ms
update_interval: 60s #30s
offline_skip_updates: 2
max_cmd_retries: 0
setup_priority: -10
canbus:
- platform: mcp2515
cs_pin: GPIO15
spi_id: spi_bus0
id: canbus_sthome
mode: NORMAL
can_id: ${CB_CANBUS_ID08}
bit_rate: 500KBPS
on_frame:
- can_id: 0
can_id_mask: 0
then:
- lambda: |-
id(can2_msgctr)++;
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
if(can_id >= 0x350 && can_id < 0x380) {
auto cbitem = cbf_store_pylon(id(can2_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
//if(publish) {
// ESP_LOGI(cbitem.tag().c_str(), "%s", cbitem.to_string().c_str());
//}
}
else if(can_id >= 0x400 && can_id <= 0x580) {
auto cbitem = cbf_store_sthome(id(can2_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
//if(publish) {
// ESP_LOGI(cbitem.tag().c_str(), "%s", cbitem.to_string().c_str());
//}
}
else {
ESP_LOGI("WARN", "Request within unhandled range CAN_ID: 0x%X. Request ignored!", can_id);
}
}
- platform: mcp2515
cs_pin: GPIO5
spi_id: spi_bus0
id: canbus_solarbattery
mode: LISTENONLY
can_id: ${CB_CANBUS_ID08}
bit_rate: 500KBPS
on_frame:
- can_id: 0
can_id_mask: 0
then:
- lambda: |-
id(can1_msgctr)++;
//id(canbus_sthome)->send_data(can_id, false, x);
//ESP_LOGI("SND_BAT", "0x%X", can_id);
- can_id: ${CB_BATTERY_LIMITS} # 0x351
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
float value = 0.1 * ((x[1] << 8) + x[0]); // unit = 0.1V
id(battery_charge_voltage_limit).publish_state(value);
value = 0.1 * static_cast<int16_t>((x[3] << 8) + x[2]); // unit = 0.1A
id(battery_charge_current_limit).publish_state(value);
value = 0.1 * static_cast<int16_t>((x[5] << 8) + x[4]); // unit = 0.1A
id(battery_discharge_current_limit).publish_state(value);
cbitem.setpublish(false);
}
}
- can_id: ${CB_BATTERY_STATE} # 0x355
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
auto value = static_cast<uint16_t>((x[1] << 8) + x[0]);
id(battery_soc).publish_state(value);
value = static_cast<uint16_t>((x[3] << 8) + x[2]);
id(battery_soh).publish_state(value);
cbitem.setpublish(false);
}
}
- can_id: ${CB_BATTERY_STATUS} # 0x356
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
float value = 0.01 * static_cast<int16_t>((x[1] << 8) + x[0]); // unit = 0.01V Voltage of single module or average module voltage of system
id(battery_system_voltage).publish_state(value);
value = 0.1 * static_cast<int16_t>((x[3] << 8) + x[2]); // unit = 0.1A Module or system total current
id(battery_system_current).publish_state(value);
value = 0.1 * static_cast<int16_t>((x[5] << 8) + x[4]); // unit = 0.1°C
id(battery_average_cell_temperature).publish_state(value);
cbitem.setpublish(false);
}
}
- can_id: ${CB_BATTERY_FAULT} # 0x359
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
char buffer[16];
bool publish = false;
uint8_t protection1 = x[0];
uint8_t protection2 = x[1];
uint8_t alarm1 = x[2];
uint8_t alarm2 = x[3];
uint8_t module_numbers = x[4];
char ch5 = x[5];
char ch6 = x[6];
id(battery_discharge_over_current).publish_state(protection1 & 0x80);
id(battery_cell_under_temperature).publish_state(protection1 & 0x10);
id(battery_cell_over_temperature).publish_state(protection1 & 0x08);
id(battery_cell_or_module_under_voltage).publish_state(protection1 & 0x04);
id(battery_cell_or_module_over_voltage).publish_state(protection1 & 0x02);
id(battery_system_error).publish_state(protection2 & 0x8);
id(battery_charge_over_current).publish_state(protection2 & 0x01);
id(battery_discharge_high_current).publish_state(alarm1 & 0x80);
id(battery_cell_low_temperature).publish_state(alarm1 & 0x10);
id(battery_cell_high_temperature).publish_state(alarm1 & 0x08);
id(battery_cell_or_module_low_voltage).publish_state(alarm1 & 0x04);
id(battery_cell_or_module_high_voltage).publish_state(alarm1 & 0x02);
id(battery_internal_communication_fail).publish_state(alarm2 & 0x8);
id(battery_charge_high_current).publish_state(alarm2 & 0x01);
snprintf(buffer, sizeof(buffer), "%d %c%c", module_numbers, ch5, ch6);
id(battery_module_numbers).publish_state(buffer);
cbitem.setpublish(false);
}
}
- can_id: ${CB_BATTERY_REQUEST_FLAG} # 0x35C
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
uint8_t request_flag = x[0];
id(battery_charge_enable).publish_state(request_flag & 0x80);
id(battery_discharge_enable).publish_state(request_flag & 0x40);
bool request_force_charge1 = request_flag & 0x20;
bool request_force_charge2 = request_flag & 0x10;
bool request_full_charge = request_flag & 0x08;
id(battery_request_force_charge1).publish_state(request_force_charge1);
id(battery_request_force_charge2).publish_state(request_force_charge2);
id(battery_request_full_charge).publish_state(request_full_charge);
if(request_force_charge1) {
ESP_LOGW("Battery", "Request force charge I. Designed for when inverter allows battery to shut down, and able to wake battery up to charge it");
}
if(request_force_charge2) {
ESP_LOGW("Battery", "Request force charge II. Designed for when inverter doesn`t want battery to shut down, able to charge battery before shut down to avoid low energy.");
}
if(request_full_charge) {
ESP_LOGW("Battery", "Request full charge. Suggest inverter to charge the battery using grid.");
}
cbitem.setpublish(false);
}
}
- can_id: ${CB_BATTERY_MANUFACTURER} # 0x35E
then:
- lambda: |-
using namespace solar;
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
auto cbitem = cbf_store_pylon(id(can1_msgctr), can_id, x, remote_transmission_request, time_obj.timestamp);
bool publish = id(g_cb_cache).additem(cbitem);
if(publish) {
std::string str(x.begin(), x.end());
id(battery_manufacturer).publish_state(str);
cbitem.setpublish(false);
}
}
switch:
- platform: restart
name: "${name} Restart"
id: "restart_switch"
- platform: gpio
id: level_shifter_output_enable
pin:
number: GPIO12
inverted: false
mode:
output: true
pullup: true
restore_mode: ALWAYS_OFF
- platform: gpio
id: reset_energy_counters
pin:
number: GPIO34
inverted: true
mode:
input: true
pullup: false # external pullup
name: "Reset Energy Counters"
disabled_by_default: True
restore_mode: RESTORE_DEFAULT_OFF
on_turn_on:
then:
- sensor.integration.reset: geyser_energy
- sensor.integration.reset: plugs_energy
- sensor.integration.reset: mains_energy
- sensor.integration.reset: lights_energy
- sensor.integration.reset: generated_energy
- sensor.integration.reset: house_energy_usage
- sensor.integration.reset: energy_loss
- lambda: |-
auto currenttime = id(time_source).now();
if(currenttime.is_valid()) {
id(energy_counters_reset_time) = currenttime.timestamp;
}
else {
ESP_LOGW("reset_energy_counters", "Time source invalid. Reset time not saved!");
}
- platform: gpio
pin:
number: GPIO36
inverted: true
mode:
input: true
pullup: false # external pullup
id: vacation_mode_switch
name: "Vacation Mode"
restore_mode: RESTORE_DEFAULT_OFF
- platform: gpio
pin:
number: GPIO35
inverted: true
mode:
input: true
pullup: false # external pullup
id: school_holiday_mode_switch
name: "School Holiday Mode"
restore_mode: RESTORE_DEFAULT_OFF
- platform: gpio
pin:
number: GPIO14
inverted: false
mode: output
id: geyser_relay
name: "Geyser Relay"
icon: "mdi:water-thermometer"
restore_mode: ALWAYS_OFF
on_turn_on:
- lambda: |-
id(geyser_relay_status) = true; // only set to false by other sensor / script to include hysteresis and thus avoid relay chattering
ESP_LOGI("info", "************* 1: Geyser Relay turned on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "************* 2: Geyser Relay turned off");
- platform: gpio
pin:
number: GPIO13
inverted: false
mode: output
id: pool_relay
name: "Pool Relay"
icon: "mdi:pool"
restore_mode: ALWAYS_OFF
on_turn_on:
- delay: 30s # rapid on and off states can burn-out motor
- lambda: |-
//id(pool_relay_status) = true; // only set to false by other sensor / script to include hysteresis and thus avoid relay chattering
ESP_LOGI("info", "************* 1: Pool Relay turned on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "************* 2: Pool Relay turned off");
output:
- platform: ledc
pin:
number: GPIO26
inverted: false
id: led_geyser_temp_blue
- platform: ledc
pin:
number: GPIO25
inverted: false
id: led_geyser_temp_green
- platform: ledc
pin:
number: GPIO33
inverted: false
id: led_geyser_temp_yellow
- platform: ledc
pin:
number: GPIO32
inverted: false
id: led_geyser_temp_red
- platform: ledc
pin:
number: GPIO27
inverted: false
id: led_inverter_battery_low
light:
- platform: monochromatic
output: led_geyser_temp_blue
id: led_geyser_temp1
on_turn_on:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 1 on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 1 off");
- platform: monochromatic
output: led_geyser_temp_green
id: led_geyser_temp2
on_turn_on:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 2 on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 2 off");
- platform: monochromatic
output: led_geyser_temp_yellow
id: led_geyser_temp3
on_turn_on:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 3 on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 3 off");
- platform: monochromatic
output: led_geyser_temp_red
id: led_geyser_temp4
on_turn_on:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 4 on");
on_turn_off:
- lambda: |-
ESP_LOGI("info", "Geyser Temperature LED 4 off");
- platform: monochromatic
output: led_inverter_battery_low
name: "LED Inverter Battery Low"
id: light_inverter_battery_low
default_transition_length: 20ms
on_turn_on:
- lambda: |-
ESP_LOGI("info", "Battery Low");
# on_turn_off:
# - lambda: |-
# ESP_LOGI("info", "Battery OK");
binary_sensor:
- platform: status
# Status platform provides a connectivity sensor
name: "Status"
device_class: connectivity
- platform: template
filters:
- delayed_off: 50ms
id: inverter_battery_charge_state
name: "Inverter Battery Charge"
device_class: battery
on_press:
then:
- light.turn_on:
id: light_inverter_battery_low
brightness: 100%
on_release:
then:
- light.turn_off:
id: light_inverter_battery_low
- platform: template
id: geyser_heating
name: "Geyser Heating"
lambda: |-
return id(geyser_current).state > 10;
device_class: heat
- platform: template
id: mains_supply
name: "Mains Supply"
lambda: |-
return id(mains_voltage_adc).state > 180; // minimum acceptable voltage
device_class: power
- platform: analog_threshold
id: inverter1_2_overload
name: "Inverter 1 & 2 Overload"
sensor_id: inverter1_2_output_power
#threshold setting applies hysteresis taking geyser load that was removed into account
threshold:
upper: 10.0
lower: 6.9
device_class: power
on_state:
then:
- lambda: |-
ESP_LOGI("info", "Inverter 1 & 2 are being overloaded. Turning geyser off.");
# - switch.turn_off: geyser_relay
on_release:
then:
- lambda: |-
ESP_LOGI("info", "Overload is cleared.");
- platform: template
id: is_public_holiday
name: "Public Holiday"
lambda: |-
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
int month = time_obj.month;
int day_of_month = time_obj.day_of_month;
int i = 0;
while(i < 12 && (id(public_holidays)[i][0] != month || id(public_holidays)[i][1] != day_of_month)) {
// ESP_LOGI("info", "%d ########### holiday check!: %d/%d ###########", i, id(holidays)[i][0], id(holidays)[i][1]);
i++;
}
// ESP_LOGI("info", "%d ########### Holiday = %d: %d/%d ###########", i, i < 12, id(holidays)[i][0], id(holidays)[i][1]);
return (i < 12);
}
return false;
- platform: template
id: is_school_holiday
name: "School Holiday"
lambda: |-
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
int month = time_obj.month;
int day_of_month = time_obj.day_of_month;
for(int i = 0; i < ${MAX_SCHOOL_HOLIDAY_PERIODS}; i++) {
int startmonth = id(school_holidays)[i][0][0];
int endmonth = id(school_holidays)[i][1][0];
if(month >= startmonth && month <= endmonth) {
int startday = id(school_holidays)[i][0][1];
int endday = id(school_holidays)[i][1][1];
if(day_of_month >= startday && day_of_month <= endday) {
return true;
}
}
}
}
return false;
# in vacation mode, geyser is only switched on when it can be powered by solar only, i.e. without using mains
- platform: template #gpio
id: vacation_mode
#pin:
# number: GPIO04
# mode:
# input: true
# pullup: true
#filters:
# - delayed_off: 100ms
name: "Vacation Mode"
icon: "mdi:beach"
# remove lambda if controlled by external switch
lambda: |-
return id(vacation_mode_switch).state;
# SOLAR BATTERY
- platform: template
id: battery_discharge_over_current
name: "Battery Discharge Over Current"
device_class: problem
- platform: template
id: battery_cell_under_temperature
name: "Battery Cell Under Temperature"
device_class: problem
- platform: template
id: battery_cell_over_temperature
name: "Battery Cell Over Temperature"
device_class: problem
- platform: template
id: battery_cell_or_module_under_voltage
name: "Battery Under Voltage"
device_class: problem
- platform: template
id: battery_cell_or_module_over_voltage
name: "Battery Over Voltage"
device_class: problem
- platform: template
id: battery_system_error
name: "Battery System Error"
device_class: problem
- platform: template
id: battery_charge_over_current
name: "Battery Charge Over Current"
device_class: problem
- platform: template
id: battery_discharge_high_current
name: "Battery Discharge High Current"
device_class: problem
- platform: template
id: battery_cell_low_temperature
name: "Battery Low Temperature"
device_class: problem
- platform: template
id: battery_cell_high_temperature
name: "Battery High Temperature"
device_class: problem
- platform: template
id: battery_cell_or_module_low_voltage
name: "Battery Low Voltage"
device_class: problem
- platform: template
id: battery_cell_or_module_high_voltage
name: "Battery High Voltage"
device_class: problem
- platform: template
id: battery_internal_communication_fail
name: "Battery Communication Fail"
device_class: problem
- platform: template
id: battery_charge_high_current
name: "Battery Charge High Current"
device_class: problem
- platform: template
id: battery_charge_enable
name: "Battery Charge Enable"
#device_class: battery_charging
- platform: template
id: battery_discharge_enable
name: "Battery Discharge Enable"
#device_class: battery_charging
- platform: template
id: battery_request_force_charge1
name: "Battery Request Force Charge 1"
# device_class: battery_charging
- platform: template
id: battery_request_force_charge2
name: "Battery Request Force Charge 2"
# device_class: battery_charging
- platform: template
id: battery_request_full_charge
name: "Battery Request Full Charge "
# device_class: battery_charging
- platform: template
id: battery_charging
name: "Battery Charging"
device_class: battery_charging
lambda: "return id(battery_system_current).state > 0;"
## inverters
- platform: template
name: "Inv1 Battery Connected"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x8000;
- platform: template
name: "Inv1 Line Normal"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x4000;
- platform: template
name: "Inv1 PV Input Normal"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x2000;
- platform: template
name: "Inv1 Load Connect Allowed"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x1000;
- platform: template
name: "Inv1 PV MPPT Working"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x0080;
- platform: template
name: "Inv1 Load Connected"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x0040;
- platform: template
name: "Inv1 Power Flow Version Supported"
# device_class: problem
lambda: |-
return id(g_inv1_power_flow) & 0x0001;
- platform: template
name: "Inv1 Battery Charging"
device_class: battery_charging
lambda: |-
int battery_flow = (id(g_inv1_power_flow) >> 10) & 3;
return battery_flow & 0x01;
- platform: template
name: "Inv1 Battery Discharging"
# device_class: battery_charging
lambda: |-
int battery_flow = (id(g_inv1_power_flow) >> 10) & 3;
return battery_flow & 0x02;
- platform: template
name: "Inv1 Draw Power from Line"
lambda: |-
int line_flow = (id(g_inv1_power_flow) >> 8) & 3;
return line_flow & 0x01;
- platform: template
name: "Inv1 Feed Power to Line"
lambda: |-
int line_flow = (id(g_inv1_power_flow) >> 8) & 3;
return line_flow & 0x10;
- platform: template
name: "Inv2 Battery Connected"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x8000;
- platform: template
name: "Inv2 Line Normal"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x4000;
- platform: template
name: "Inv2 PV Input Normal"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x2000;
- platform: template
name: "Inv2 Load Connect Allowed"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x1000;
- platform: template
name: "Inv2 PV MPPT Working"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x0080;
- platform: template
name: "Inv2 Load Connected"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x0040;
- platform: template
name: "Inv2 Power Flow Version Supported"
# device_class: problem
lambda: |-
return id(g_inv2_power_flow) & 0x0001;
- platform: template
name: "Inv2 Battery Charging"
device_class: battery_charging
lambda: |-
int battery_flow = (id(g_inv2_power_flow) >> 10) & 3;
return battery_flow & 0x01;
- platform: template
name: "Inv2 Battery Discharging"
# device_class: battery_charging
lambda: |-
int battery_flow = (id(g_inv2_power_flow) >> 10) & 3;
return battery_flow & 0x02;
- platform: template
name: "Inv2 Draw Power from Line"
lambda: |-
int line_flow = (id(g_inv2_power_flow) >> 8) & 3;
return line_flow & 0x01;
- platform: template
name: "Inv2 Feed Power to Line"
lambda: |-
int line_flow = (id(g_inv2_power_flow) >> 8) & 3;
return line_flow & 0x10;
sensor:
# NB! Keep all ads1115 sample rates the same. Update intervals should be more than or equal to 1/sample_rate
# ads1115_48
- platform: ads1115
multiplexer: 'A0_A1'
gain: 2.048 # 4.096
ads1115_id: ads1115_48
sample_rate: 128 #860
# update_interval: 10ms
# id: mains_current_adc
state_class: measurement
device_class: current
accuracy_decimals: 8
# mod ###########################
name: "Mains Current"
id: mains_current
unit_of_measurement: "A"
icon: "mdi:current"
update_interval: 8ms #5ms
filters:
# - offset: 0.0002
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250 #5000
send_every: 104 #208 #416
send_first_at: 104 #208 #416
- lambda: return sqrt(x);
- multiply: 95.5 #88.44
- offset: -0.2
- lambda: |-
if(abs(x) < 0.1)
return 0.0;
return x;
# mod end #######################
- platform: ads1115
multiplexer: 'A2_A3'
gain: 2.048 # 4.096
ads1115_id: ads1115_48
sample_rate: 128 #860
# update_interval: 10ms
# id: power_outlets_current_adc
state_class: measurement
device_class: current
accuracy_decimals: 8
# mod ###########################
name: "Plugs Supply Current"
id: power_outlets_current
unit_of_measurement: "A"
icon: "mdi:current"
update_interval: 8ms #5ms
filters:
# - offset: 0.0002
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250 #5000
send_every: 104 #208 #416
send_first_at: 104 #208 #416
- lambda: return sqrt(x);
- multiply: 95 #88.44
- offset: -0.2
- lambda: |-
if(abs(x) < 0.1)
return 0.0;
return x;
# mod end #######################
# ads1115_49
- platform: ads1115
multiplexer: 'A0_A1'
gain: 2.048 # 4.096
ads1115_id: ads1115_49
sample_rate: 128 #860
# update_interval: 10ms
# id: geyser_current_adc
state_class: measurement
device_class: current
accuracy_decimals: 8
# mod ###########################
name: "Geyser Current"
id: geyser_current
unit_of_measurement: "A"
icon: "mdi:current"
update_interval: 8ms #5ms
filters:
# - offset: 0.0002
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250 #5000
send_every: 104 #208 #416
send_first_at: 104 #208 #416
- lambda: return sqrt(x);
- multiply: 169.4 #91.1 #88.44
- offset: -0.2
- lambda: |-
if(abs(x) < 0.1)
return 0.0;
return x;
on_value_range:
- below: 5.0
then:
- lambda: |-
ESP_LOGI("info", "Geyser lost power.");
- above: 0.5
then:
- lambda: |-
ESP_LOGI("info", "Geyser was energised.");
# mod end #######################
- platform: ads1115
multiplexer: A2_A3
gain: 2.048 # 4.096
ads1115_id: ads1115_49
sample_rate: 128 #860
# update_interval: 10ms
# id: lights_current_adc
state_class: measurement
device_class: current
accuracy_decimals: 8
# mod ###########################
name: "Lights Current"
id: lights_current
unit_of_measurement: "A"
icon: "mdi:current"
update_interval: 8ms #5ms
filters:
# - offset: 0.0002
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250 #5000
send_every: 104 #208 #416
send_first_at: 104 #208 #416
- lambda: return sqrt(x);
- multiply: 92.1 #88.44
- offset: -0.2
- lambda: |-
if(abs(x) < 0.1)
return 0.0;
return x;
# mod end #######################
# ads1115_4A
# Mains voltage sensor
- platform: ads1115
ads1115_id: ads1115_4A
sample_rate: 128 #860
name: "Mains Voltage ADC"
id: mains_voltage_adc
unit_of_measurement: "V"
accuracy_decimals: 8
icon: "mdi:flash"
multiplexer: A0_A1
gain: 2.048 # 4.096
update_interval: 8ms #5ms #23ms
device_class: voltage
state_class: measurement
filters:
- offset: 0.0065
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250
send_every: 104
send_first_at: 104 #416
- lambda: return sqrt(x);
- multiply: 930 #650
- lambda: |-
if(abs(x) < 20)
return 0;
return x;
# ads1115_4A
# Inverter voltage sensor
- platform: ads1115
ads1115_id: ads1115_4A
sample_rate: 128 #860
name: "Inverter Output Voltage ADC"
id: inverter_output_voltage_adc
unit_of_measurement: "V"
accuracy_decimals: 8
icon: "mdi:flash"
multiplexer: A2_A3
gain: 2.048 # 4.096
update_interval: 8ms #5ms #23ms
device_class: voltage
state_class: measurement
filters:
- offset: 0.0131
- lambda: return x * x;
- sliding_window_moving_average:
window_size: 625 #1250
send_every: 104
send_first_at: 104
- lambda: return sqrt(x);
- multiply: 930 #650
- lambda: |-
if(abs(x) < 10)
return 0;
return x;
# ads1115_4A
# # Inverter voltage sensor
# - platform: ads1115
# ads1115_id: ads1115_4A
# sample_rate: 860
# name: "ADS1115 4A A2"
# id: adc4A_A2
# unit_of_measurement: "V"
# accuracy_decimals: 8
# icon: "mdi:flash"
# multiplexer: A2_GND
# gain: 4.096
# update_interval: 23ms
# device_class: voltage
# state_class: measurement
# filters:
# - offset: -1.6249 # -1.266
# - lambda: return x * x;
# - sliding_window_moving_average:
# window_size: 1250
# send_every: 104
# send_first_at: 104
# - lambda: return sqrt(x);
# - multiply: 10000
#
# # ads1115_4A
# # Inverter voltage sensor
# - platform: ads1115
# ads1115_id: ads1115_4A
# sample_rate: 860
# name: "ADS1115 4A A3"
# id: adc4A_A3
# unit_of_measurement: "V"
# accuracy_decimals: 8
# icon: "mdi:flash"
# multiplexer: A3_GND
# gain: 4.096
# update_interval: 23ms
# device_class: voltage
# state_class: measurement
# filters:
# - offset: -1.6249 # -1.266
# - lambda: return x * x;
# - sliding_window_moving_average:
# window_size: 1250
# send_every: 104
# send_first_at: 104
# - lambda: return sqrt(x);
# - multiply: 10000
# # 30A clamp
# - platform: ct_clamp
# sensor: geyser_current_adc
# id: geyser_current
# name: "Geyser Current"
# update_interval: 2s
# sample_duration: 2000ms #15000ms
# state_class: measurement
# device_class: current
# filters:
# # burden resistor is 62Ω in parallel with 33Ω = 21.54Ω
# # multiplier should be 1860/21.54 = x86.35
# - multiply: 88.51 # real world
# - lambda: |-
# if(x < 0.25)
# return 0.0;
# return x;
# on_value_range:
# - below: 0.5
# then:
# - lambda: |-
# ESP_LOGI("info", "Geyser lost power.");
# - above: 0.5
# then:
# - lambda: |-
# ESP_LOGI("info", "Geyser was energised.");
# # 30A clamp
# - platform: ct_clamp
# sensor: lights_current_adc
# id: lights_current
# name: "Lights Current"
# update_interval: 1s
# sample_duration: 1s #15000ms
# state_class: measurement
# device_class: current
# filters:
# # burden resistor is 62Ω in parallel with 33Ω = 21.54Ω
# # multiplier should be 1860/21.54 = x86.35
# - multiply: 88.44 # real world
# - lambda: |-
# if(x < 0.25)
# return 0.0;
# return x;
# # 100A clamp
# - platform: ct_clamp
# sensor: mains_current_adc
# id: mains_current
# name: "Mains Current"
# update_interval: 1s
# sample_duration: 1s #15000ms
# state_class: measurement
# device_class: current
# filters:
# # burden resistor is 22Ω
# # multiplier should be 2000/22 = x90.9
# - multiply: 90.25 # real world
# - lambda: |-
# if(x < 0.25)
# return 0.0;
# return x;
#
# # 100A clamp
# - platform: ct_clamp
# sensor: power_outlets_current_adc
# id: power_outlets_current
# name: "Plugs Supply Current"
# update_interval: 1s
# sample_duration: 1s #15000ms
# state_class: measurement
# device_class: current
# filters:
# # burden resistor is 22Ω
# # multiplier should be 2000/22 = x90.9
# - multiply: 91.14 # real world
# - lambda: |-
# if(x < 0.25)
# return 0.0;
# return x;
- platform: template
id: calibrate_lights
name: "AAA Lights A"
lambda: |-
return id(lights_current).state;
state_class: measurement
device_class: current
accuracy_decimals: 8
update_interval: 1s
- platform: template
id: calibrate_mains
name: "AAA Mains A"
lambda: |-
return id(mains_current).state;
state_class: measurement
device_class: current
accuracy_decimals: 8
update_interval: 1s
- platform: template
id: calibrate_mains_v
name: "AAA Mains V"
lambda: |-
return id(mains_voltage_adc).state;
state_class: measurement
device_class: voltage
accuracy_decimals: 8
update_interval: 1s
- platform: template
id: calibrate_plugs
name: "AAA Plugs A"
lambda: |-
return id(power_outlets_current).state;
state_class: measurement
device_class: current
accuracy_decimals: 8
update_interval: 1s
- platform: template
id: calibrate_plugs_V
name: "AAA Plugs V"
lambda: |-
return id(inverter_output_voltage_adc).state;
state_class: measurement
device_class: voltage
accuracy_decimals: 8
update_interval: 1s
- platform: template
id: calibrate_geyser
name: "AAA Geyser A"
lambda: |-
return id(geyser_current).state;
state_class: measurement
device_class: current
accuracy_decimals: 8
update_interval: 1s
# for now we use a template until we get a voltage sensor
- platform: template
id: mains_voltage
name: "Mains Voltage"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "V"
lambda: |-
return 230.0;
update_interval: 2s
device_class: voltage
state_class: measurement
# for now we use a template until we get a voltage sensor
- platform: template
id: lights_voltage
name: "Lights Voltage"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "V"
lambda: |-
return 230.0;
update_interval: 2s
device_class: voltage
state_class: measurement
# for now we use a template until we get a voltage sensor
- platform: template
id: inverter1_2_output_voltage
name: "Inverter 1 & 2 Output Voltage"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "V"
lambda: |-
return 230.0;
update_interval: 2s
device_class: voltage
state_class: measurement
- platform: template
# if no current is flowing to estimate heating time
id: geyser_element_power
unit_of_measurement: "W"
name: "Geyser Element Power"
lambda: |-
return 3000.0;
device_class: power
state_class: measurement
- platform: template
id: inverter1_2_output_current
name: "Inverter 1 & 2 Output Current"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "A"
lambda: |-
return id(power_outlets_current).state + id(geyser_current).state;
update_interval: 2s
device_class: current
state_class: measurement
- platform: template
id: inverter1_2_output_power
name: "Inverter 1 & 2 Output Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
return 0.001 * (id(inverter1_2_output_voltage).state * id(inverter1_2_output_current).state);
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: geyser_power
name: "Geyser Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
filters:
- filter_out: nan
lambda: |-
return 0.001 * id(inverter1_2_output_voltage).state * id(geyser_current).state;
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: power_outlets_power
name: "Plugs Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
filters:
- filter_out: nan
lambda: |-
return 0.001 * (id(inverter1_2_output_voltage).state * id(power_outlets_current).state);
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: lights_power
name: "Lights Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
return 0.001 * (id(lights_voltage).state * id(lights_current).state);
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: total_inverter_output
name: "Total Inverter Output"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
return id(lights_power).state + id(power_outlets_power).state + id(geyser_power).state;
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: mains_power
name: "Mains Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
return 0.001 * (id(mains_voltage).state * id(mains_current).state);
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: generated_power
name: "Generated Power"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
auto power = id(total_inverter_output).state - id(mains_power).state;
if(power < 0)
return 0.0;
return power;
update_interval: 2s
device_class: power
state_class: measurement
- platform: template
id: power_loss
name: "Power Loss"
# icon: mdi:flash
accuracy_decimals: 2
unit_of_measurement: "kW"
lambda: |-
auto power = id(total_inverter_output).state - id(mains_power).state;
if(power < 0)
return -power;
return 0.0;
update_interval: 2s
device_class: power
state_class: measurement
- platform: homeassistant
entity_id: input_number.geyser_target_temp
id: geyser_target_temp
- platform: total_daily_energy
name: 'Daily Geyser Energy'
id: daily_geyser_energy
power_id: geyser_power
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Geyser Energy'
id: monthly_geyser_energy
sensor: geyser_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Geyser Energy'
id: yearly_geyser_energy
sensor: geyser_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Geyser Energy'
id: geyser_energy
sensor: geyser_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: 'Daily Plugs Energy'
id: daily_plugs_energy
power_id: power_outlets_power
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Plugs Energy'
id: monthly_plugs_energy
sensor: power_outlets_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Plugs Energy'
id: yearly_plugs_energy
sensor: power_outlets_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Plugs Energy'
id: plugs_energy
sensor: power_outlets_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: 'Daily Mains Energy'
id: daily_mains_energy
power_id: mains_power
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Mains Energy'
id: monthly_mains_energy
sensor: mains_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Mains Energy'
id: yearly_mains_energy
sensor: mains_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Mains Energy'
id: mains_energy
sensor: mains_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: 'Daily Lights Energy'
id: daily_lights_energy
power_id: lights_power
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Lights Energy'
id: monthly_lights_energy
sensor: lights_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Lights Energy'
id: yearly_lights_energy
sensor: lights_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Lights Energy'
id: lights_energy
sensor: lights_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: 'Daily Generated Energy'
id: daily_generated_energy
power_id: generated_power
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Generated Energy'
id: monthly_generated_energy
sensor: generated_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Generated Energy'
id: yearly_generated_energy
sensor: generated_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Generated Energy'
id: generated_energy
sensor: generated_power
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: "Daily House Energy Usage"
id: daily_house_energy_usage
power_id: total_inverter_output
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly House Energy Usage'
id: monthly_house_energy_usage
sensor: total_inverter_output
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly House Energy Usage'
id: yearly_house_energy_usage
sensor: total_inverter_output
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'House Energy Usage'
id: house_energy_usage
sensor: total_inverter_output
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: total_daily_energy
name: "Daily Energy Loss"
id: daily_energy_loss
power_id: power_loss
unit_of_measurement: 'kWh'
state_class: total_increasing
device_class: energy
accuracy_decimals: 3
# monthly integration sensor
- platform: integration
name: 'Monthly Energy Loss'
id: monthly_energy_loss
sensor: power_loss
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# yearly integration sensor
- platform: integration
name: 'Yearly Energy Loss'
id: yearly_energy_loss
sensor: power_loss
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
# lifetime integration sensor
- platform: integration
name: 'Energy Loss'
id: energy_loss
sensor: power_loss
time_unit: h
restore: true
state_class: total_increasing
device_class: energy
unit_of_measurement: 'kWh'
accuracy_decimals: 3
- platform: template
id: heating_loss
name: "Heat Loss (now)"
icon: mdi:thermometer
unit_of_measurement: "W"
lambda: |-
return id(g_heat_loss);
update_interval: 2s
- platform: template
id: active_schedule_day
name: "Schedule Day"
icon: mdi:calendar-clock
accuracy_decimals: 0
unit_of_measurement: ""
lambda: |-
auto time_obj = ESPTime::from_epoch_local(id(active_schedule_period)[0]);
return time_obj.day_of_week;
update_interval: 2s
- platform: template
id: active_schedule_temp
name: "Schedule Temp"
icon: mdi:water-thermometer-outline
unit_of_measurement: "°C"
lambda: |-
return id(active_schedule_temperature);
update_interval: 2s
- platform: template
id: heat_gained
name: "Heat gained"
icon: mdi:water-thermometer-outline
unit_of_measurement: "W"
lambda: |-
return id(g_heat_gained);
update_interval: 2s
- platform: template
id: calculated_heat_loss
name: "Heat loss (est)"
icon: mdi:water-thermometer-outline
unit_of_measurement: "W"
lambda: |-
double dtemp = id(last_temp_diff);
if(dtemp < -100)
return 0;
return id(thermal_transmittance) * id(geyser_surface_area) * id(last_temp_diff);
update_interval: 2s
- platform: template
id: last_geyser_top_temp
name: "Last temperature"
icon: mdi:water-thermometer-outline
unit_of_measurement: "°C"
lambda: |-
return id(last_geyser_top_temperature);
update_interval: 2s
device_class: temperature
state_class: measurement
- platform: dallas_temp
address: 0x2e00000059db6928
name: "Geyser Top Temperature"
id: geyser_top_temperature
update_interval: "60s"
resolution: 12
one_wire_id: geyser_temperature_sensors
unit_of_measurement: "°C"
#icon: "mdi:water-thermometer"
device_class: "temperature"
state_class: "measurement"
accuracy_decimals: 1
filters:
- filter_out: nan
# - sliding_window_moving_average:
# window_size: 120 # averages over 120 update intervals
# send_every: 60 # reports every 60 update intervals
- platform: dallas_temp
address: 0x0b00000036f14d28
name: "Geyser Bottom Temperature"
id: geyser_bottom_temperature
update_interval: "60s"
resolution: 12
one_wire_id: geyser_temperature_sensors
unit_of_measurement: "°C"
#icon: "mdi:water-thermometer"
device_class: "temperature"
state_class: "measurement"
accuracy_decimals: 1
filters:
- filter_out: nan
# - sliding_window_moving_average:
# window_size: 120 # averages over 120 update intervals
# send_every: 60 # reports every 60 update intervals
- platform: dallas_temp
address: 0x6455a0d445e8f028
name: "Ambient Temperature"
id: ambient_temperature
update_interval: "60s"
resolution: 12
one_wire_id: geyser_temperature_sensors
unit_of_measurement: "°C"
#icon: "mdi:water-thermometer"
device_class: "temperature"
state_class: "measurement"
accuracy_decimals: 1
filters:
- filter_out: nan
# - sliding_window_moving_average:
# window_size: 120 # averages over 120 update intervals
# send_every: 60 # reports every 60 update intervals
# Report wifi signal strength every 5 min if changed
- platform: wifi_signal
name: WiFi Signal
update_interval: 300s
filters:
- delta: 10%
# human readable uptime sensor output to the text sensor above
- platform: uptime
name: Uptime in Days
id: uptime_sensor_days
update_interval: 10s
on_raw_value:
then:
- text_sensor.template.publish:
id: uptime_human
state: !lambda |-
int seconds = round(id(uptime_sensor_days).raw_state);
int days = seconds / (24 * 3600);
seconds = seconds % (24 * 3600);
int hours = seconds / 3600;
seconds = seconds % 3600;
int minutes = seconds / 60;
seconds = seconds % 60;
auto days_str = std::to_string(days);
auto hours_str = std::to_string(hours);
auto minutes_str = std::to_string(minutes);
auto seconds_str = std::to_string(seconds);
return (
(days ? days_str + "d " : "") +
(hours ? hours_str + "h " : "") +
(minutes ? minutes_str + "m " : "") +
(seconds_str + "s")
).c_str();
# number of seconds since midnight
# - platform: template
# id: time_of_day
# name: "Time of day"
# accuracy_decimals: 0
# unit_of_measurement: "s"
# lambda: |-
# auto currenttime = id(time_source).now();
# ESPTime time_obj = currenttime;
# time_obj.second = 0;
# time_obj.minute = 0;
# time_obj.hour = 0;
# time_obj.recalc_timestamp_local();
# return currenttime.timestamp - time_obj.timestamp;
# update_interval: 10s
# SOLAR BATTERY
- platform: template
id: battery_level
name: "Battery Level"
accuracy_decimals: 0
unit_of_measurement: "%"
state_class: measurement
device_class: battery
lambda: "{ return id(battery_soc).state; }"
- platform: template
id: battery_soc
name: "Battery SOC"
accuracy_decimals: 0
unit_of_measurement: "%"
state_class: measurement
device_class: battery
- platform: template
id: battery_soh
name: "Battery Health"
accuracy_decimals: 0
unit_of_measurement: "%"
state_class: measurement
device_class: battery
- platform: template
id: battery_system_voltage
name: "Battery Voltage"
accuracy_decimals: 2
unit_of_measurement: "V"
state_class: measurement
device_class: voltage
- platform: template
id: battery_system_current
name: "Battery Current"
accuracy_decimals: 1
unit_of_measurement: "A"
state_class: measurement
device_class: current
- platform: template
id: battery_average_cell_temperature
name: "Battery Cell Temperature"
accuracy_decimals: 1
unit_of_measurement: "°C"
device_class: temperature
state_class: measurement
- platform: template
id: battery_charge_voltage_limit
name: "Battery Charge Voltage Limit"
accuracy_decimals: 1
unit_of_measurement: "V"
state_class: measurement
device_class: voltage
- platform: template
id: battery_charge_current_limit
name: "Battery Charge Current Limit"
accuracy_decimals: 1
unit_of_measurement: "A"
state_class: measurement
device_class: current
- platform: template
id: battery_discharge_current_limit
name: "Battery Discharge Current Limit"
accuracy_decimals: 1
unit_of_measurement: "A"
state_class: measurement
device_class: current
## inverters
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 SettingDataSn"
register_type: holding
address: ${Felicity_Inv_SettingDataSn} # 0x1100
accuracy_decimals: 0
value_type: U_WORD
register_count: 1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Fault Code"
register_type: holding
address: ${Felicity_Inv_FaultCode} # 0x1103
value_type: U_WORD
register_count: 1
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device1
id: inv1_power_flow_msg
register_type: holding
address: ${Felicity_Inv_PowerFlowMsg} # 0x1104
value_type: U_WORD
register_count: 4
lambda: |-
id(g_inv1_power_flow) = x;
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Battery Voltage"
register_type: holding
address: ${Felicity_Inv_BatteryVoltage} # 0x1108
value_type: U_WORD
register_count: 1
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.01
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Battery Current"
register_type: holding
address: ${Felicity_Inv_BatteryCurrent} # 0x1109
value_type: S_WORD
register_count: 1
unit_of_measurement: "A"
device_class: current
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 BatteryPower"
id: inv1_batterypower
register_type: holding
address: ${Felicity_Inv_BatteryPower} # 0x110A
value_type: S_WORD
register_count: 7
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 AC Output Voltage"
register_type: holding
address: ${Felicity_Inv_ACOutputVoltage} # 0x1111
value_type: U_WORD
register_count: 6
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 AC Input Voltage"
register_type: holding
address: ${Felicity_Inv_ACInputVoltage} # 0x1117
value_type: U_WORD
register_count: 2
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 AC Input Frequency"
register_type: holding
address: ${Felicity_Inv_ACInputFrequency} # 0x1119
value_type: U_WORD
register_count: 5
unit_of_measurement: "Hz"
device_class: frequency
accuracy_decimals: 2
filters:
- multiply: 0.01
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 AC Output Active Power"
id: inv1_ac_output_active_power
register_type: holding
address: ${Felicity_Inv_ACOutputActivePower} # 0x111E
value_type: S_WORD
register_count: 1
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 AC Output Apparent Power"
register_type: holding
address: ${Felicity_Inv_ACOutputApparentPower} # 0x111F
value_type: U_WORD
register_count: 1
unit_of_measurement: "VA"
device_class: apparent_power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Load Percentage"
register_type: holding
address: ${Felicity_Inv_LoadPercentage} # 0x1120
value_type: U_WORD
register_count: 6
unit_of_measurement: "%"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 PV Input Voltage"
register_type: holding
address: ${Felicity_Inv_PVInputVoltage} # 0x1126
value_type: U_WORD
register_count: 4
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 PV Input Power"
id: inv1_pv_input_power
register_type: holding
address: ${Felicity_Inv_PVInputPower} # 0x112A
value_type: S_WORD
register_count: 1
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
############### modbus device 2 ###############
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 SettingDataSn"
register_type: holding
address: ${Felicity_Inv_SettingDataSn} # 0x1100
accuracy_decimals: 0
value_type: U_WORD
register_count: 1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Fault Code"
register_type: holding
address: ${Felicity_Inv_FaultCode} # 0x1103
value_type: U_WORD
register_count: 1
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device2
id: inv2_power_flow_msg
register_type: holding
address: ${Felicity_Inv_PowerFlowMsg} # 0x1104
value_type: U_WORD
register_count: 4
lambda: |-
id(g_inv2_power_flow) = x;
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Battery Voltage"
register_type: holding
address: ${Felicity_Inv_BatteryVoltage} # 0x1108
value_type: U_WORD
register_count: 1
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.01
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Battery Current"
register_type: holding
address: ${Felicity_Inv_BatteryCurrent} # 0x1109
value_type: S_WORD
register_count: 1
unit_of_measurement: "A"
device_class: current
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 BatteryPower"
id: inv2_batterypower
register_type: holding
address: ${Felicity_Inv_BatteryPower} # 0x110A
value_type: S_WORD
register_count: 7
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 AC Output Voltage"
register_type: holding
address: ${Felicity_Inv_ACOutputVoltage} # 0x1111
value_type: U_WORD
register_count: 6
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 AC Input Voltage"
register_type: holding
address: ${Felicity_Inv_ACInputVoltage} # 0x1117
value_type: U_WORD
register_count: 2
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 AC Input Frequency"
register_type: holding
address: ${Felicity_Inv_ACInputFrequency} # 0x1119
value_type: U_WORD
register_count: 5
unit_of_measurement: "Hz"
device_class: frequency
accuracy_decimals: 2
filters:
- multiply: 0.01
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 AC Output Active Power"
id: inv2_ac_output_active_power
register_type: holding
address: ${Felicity_Inv_ACOutputActivePower} # 0x111E
value_type: S_WORD
register_count: 1
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 AC Output Apparent Power"
register_type: holding
address: ${Felicity_Inv_ACOutputApparentPower} # 0x111F
value_type: U_WORD
register_count: 1
unit_of_measurement: "VA"
device_class: apparent_power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Load Percentage"
register_type: holding
address: ${Felicity_Inv_LoadPercentage} # 0x1120
value_type: U_WORD
register_count: 6
unit_of_measurement: "%"
device_class: power
accuracy_decimals: 0
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 PV Input Voltage"
register_type: holding
address: ${Felicity_Inv_PVInputVoltage} # 0x1126
value_type: U_WORD
register_count: 4
unit_of_measurement: "V"
device_class: voltage
accuracy_decimals: 1
filters:
- multiply: 0.1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 PV Input Power"
id: inv2_pv_input_power
register_type: holding
address: ${Felicity_Inv_PVInputPower} # 0x112A
value_type: S_WORD
register_count: 1
unit_of_measurement: "W"
device_class: power
accuracy_decimals: 0
text_sensor:
- platform: template
id: calculated_heat_loss_text
name: "Heat loss (est)"
icon: mdi:clock
lambda: |-
char buffer[32];
time_t start_time = id(heat_monitor_start);
ESPTime time_obj = ESPTime::from_epoch_local(start_time);
auto timestr = time_obj.strftime("%H:%M");
double hl = id(calculated_heat_loss).state;
snprintf(buffer, sizeof(buffer), "%.1f", hl);
auto heat_loss_str = std::string(buffer);
return heat_loss_str + "@" + timestr;
update_interval: 10s
# - platform: template
# id: module_time
# name: "Module time"
# icon: mdi:clock
# lambda: |-
# auto time_obj = id(time_source).now();
# return time_obj.strftime("%Y-%m-%d %H:%M:%S");
# update_interval: 1s
# Expose WiFi information as sensors
- platform: wifi_info
ip_address:
name: IP
mac_address:
name: Mac Address
- platform: template
id: active_schedule_start_text
name: "Schedule Start"
icon: mdi:calendar-clock
- platform: template
id: active_schedule_end_text
name: "Schedule End"
icon: mdi:calendar-clock
- platform: template
id: heating_start_text
name: "Heating Start"
icon: mdi:clock-start
- platform: template
id: heating_time_text
name: "Heating Time"
icon: mdi:clock-time-eight-outline
- platform: template
id: heating_end_text
name: "Heating End"
icon: mdi:clock-end
- platform: template
id: energy_counters_reset_time_text
name: "Energy Reset @"
icon: mdi:clock
lambda: |-
auto ts = id(energy_counters_reset_time);
auto time_obj = ESPTime::from_epoch_local(ts);
return time_obj.strftime("%Y-%m-%d %H:%M:%S");
# human readable update text sensor from sensor:uptime
- platform: template
name: Uptime
id: uptime_human
icon: mdi:clock-start
- platform: homeassistant
name: "Geyser Target Temp Time"
entity_id: input_datetime.geyser_target_temp_time
id: geyser_target_temp_time
- platform: homeassistant
name: "Geyser Schedule"
entity_id: schedule.geyser_schedule
id: hass_geyser_schedule
# SOLAR BATTERY
- platform: template
id: battery_manufacturer
name: "Battery Manufacturer"
- platform: template
id: battery_module_numbers
name: "Battery Module Numbers"
## inverters
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 SerialNo"
register_type: holding
address: ${Felicity_Inv_SerialNo} # 0xF804
response_size: 14 # should be 10, but absorbing extra four bytes
raw_encode: HEXBYTES
lambda: |-
char buffer[32];
uint16_t sn0 = modbus_controller::word_from_hex_str(x, 0);
uint16_t sn1 = modbus_controller::word_from_hex_str(x, 2);
uint16_t sn2 = modbus_controller::word_from_hex_str(x, 4);
uint16_t sn3 = modbus_controller::word_from_hex_str(x, 6);
uint16_t sn4 = modbus_controller::word_from_hex_str(x, 8);
snprintf(buffer, sizeof(buffer), "%04d%04d%04d%04d%04d", sn0, sn1, sn2, sn3, sn4);
return std::string(buffer).substr(0, 14);
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Type"
id: inverter1_type
bitmask: 0
register_type: holding
address: ${Felicity_Inv_Type} # 0xF800
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch (value) {
case 0x50: return std::string("High Frequency Inverter");
default: return std::string("Unknown");
}
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Sub Type"
id: inverter1_subtype
bitmask: 0
register_type: holding
address: ${Felicity_Inv_SubType} # 0xF801
response_size: 6 # should be 2, but absorbing extra four bytes
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch (value) {
case 0x0204: return std::string("3024 (3000VA/24V)");
case 0x0408: return std::string("5048 (5000VA/48V)");
default: return std::string("Unknown");
}
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 CPU1 F/W Version"
bitmask: 0
register_type: holding
address: ${Felicity_Inv_CPU1_FW_Version} # 0xF80B
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
return std::to_string(value);
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 CPU2 F/W Version"
bitmask: 0
register_type: holding
address: ${Felicity_Inv_CPU2_FW_Version} # 0xF80C
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
return std::to_string(value);
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Working Mode"
address: ${Felicity_Inv_WorkingMode} # 0x1101
bitmask: 0
register_type: holding
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch(value) {
case 0: return std::string("Power On");
case 1: return std::string("Standby");
case 2: return std::string("Bypass");
case 3: return std::string("Battery");
case 4: return std::string("Fault");
case 5: return std::string("Line");
case 6: return std::string("PV Charge");
}
return std::string("Unknown");
register_count: 1
- platform: modbus_controller
modbus_controller_id: modbus_device1
name: "Inv1 Charge Mode"
address: ${Felicity_Inv_BatteryChargingStage} # 0x1102
bitmask: 0
register_type: holding
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch(value) {
case 0: return std::string("Idle");
case 1: return std::string("Bulk");
case 2: return std::string("Absorption");
case 3: return std::string("Float");
}
return std::string("Unknown");
register_count: 1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 SerialNo"
register_type: holding
address: ${Felicity_Inv_SerialNo} # 0xF804
response_size: 14 # should be 10, but absorbing extra four bytes
raw_encode: HEXBYTES
lambda: |-
char buffer[32];
uint16_t sn0 = modbus_controller::word_from_hex_str(x, 0);
uint16_t sn1 = modbus_controller::word_from_hex_str(x, 2);
uint16_t sn2 = modbus_controller::word_from_hex_str(x, 4);
uint16_t sn3 = modbus_controller::word_from_hex_str(x, 6);
uint16_t sn4 = modbus_controller::word_from_hex_str(x, 8);
snprintf(buffer, sizeof(buffer), "%04d%04d%04d%04d%04d", sn0, sn1, sn2, sn3, sn4);
return std::string(buffer).substr(0, 14);
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Type"
id: inverter2_type
bitmask: 0
register_type: holding
address: ${Felicity_Inv_Type} # 0xF800
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch (value) {
case 0x50: return std::string("High Frequency Inverter");
default: return std::string("Unknown");
}
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Sub Type"
id: inverter2_subtype
bitmask: 0
register_type: holding
address: ${Felicity_Inv_SubType} # 0xF801
response_size: 6 # should be 2, but absorbing extra four bytes
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch (value) {
case 0x0204: return std::string("3024 (3000VA/24V)");
case 0x0408: return std::string("5048 (5000VA/48V)");
default: return std::string("Unknown");
}
return x;
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 CPU1 F/W Version"
bitmask: 0
register_type: holding
address: ${Felicity_Inv_CPU1_FW_Version} # 0xF80B
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
return std::to_string(value);
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 CPU2 F/W Version"
bitmask: 0
register_type: holding
address: ${Felicity_Inv_CPU2_FW_Version} # 0xF80C
response_size: 2
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
return std::to_string(value);
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Working Mode"
address: ${Felicity_Inv_WorkingMode} # 0x1101
bitmask: 0
register_type: holding
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch(value) {
case 0: return std::string("Power On");
case 1: return std::string("Standby");
case 2: return std::string("Bypass");
case 3: return std::string("Battery");
case 4: return std::string("Fault");
case 5: return std::string("Line");
case 6: return std::string("PV Charge");
}
return std::string("Unknown");
register_count: 1
- platform: modbus_controller
modbus_controller_id: modbus_device2
name: "Inv2 Charge Mode"
address: ${Felicity_Inv_BatteryChargingStage} # 0x1102
bitmask: 0
register_type: holding
raw_encode: HEXBYTES
lambda: |-
uint16_t value = modbus_controller::word_from_hex_str(x, 0);
switch(value) {
case 0: return std::string("Idle");
case 1: return std::string("Bulk");
case 2: return std::string("Absorption");
case 3: return std::string("Float");
}
return std::string("Unknown");
register_count: 1
script:
- id: set_active_schedule
then:
- lambda: |-
auto currenttime = id(time_source).now();
int dayofweek = currenttime.day_of_week;
ESPTime start_of_day = currenttime;
start_of_day.second = 0;
start_of_day.minute = 0;
start_of_day.hour = 0;
start_of_day.recalc_timestamp_local();
time_t today_seconds = start_of_day.timestamp;
time_t now_seconds = currenttime.timestamp;
time_t seconds = now_seconds - today_seconds;
id(active_schedule_temperature) = 0; // temperature = 0 is regarded as an empty setting
auto future_endtime = 700000; // initialise to max value
int active_idx = 0;
int active_blk = 0;
bool active_holiday = false;
int d = 0;
auto day_seconds = today_seconds;
do {
int g_schedule_idx = 0;
id(get_geyser_mode).execute(g_schedule_idx);
auto day_schedule = id(g_schedule)[g_schedule_idx];
// // debug start
// auto t_obj = ESPTime::from_epoch_local(day_seconds);
// t_obj.recalc_timestamp_local();
// auto date = t_obj.strftime("%Y-%m-%d");
// ESP_LOGI("info", "date: %s", date.c_str());
// // debug end
int blk = 0;
do {
if(day_schedule[blk][0] > 0) {
auto endtime = day_schedule[blk][2] + day_seconds;
if(endtime > now_seconds) {
time_t seconds_to_endtime = endtime - now_seconds;
if(seconds_to_endtime < future_endtime) {
future_endtime = seconds_to_endtime;
active_idx = g_schedule_idx;
active_blk = blk;
}
}
}
}
while(++blk < ${HEATING_DAY_BLOCKS}); // second dimension of the g_schedule array
dayofweek = (dayofweek < 7) ? dayofweek++ : 1;
day_seconds += 86400; // next day
}
while(++d < ${GEYSER_MODES}); // first dimension of the g_schedule array
auto day_schedule = id(g_schedule)[active_idx];
id(active_schedule_temperature) = static_cast<double>(day_schedule[active_blk][0]) / ${HEATING_TEMP_SCALE};
id(active_schedule_period)[0] = day_schedule[active_blk][1] + today_seconds;
id(active_schedule_period)[1] = day_schedule[active_blk][2] + today_seconds;
//ESP_LOGI("info", "3. day:%d, block:%d, schedule: %d / %d / %d (%d)", active_idx, active_blk, day_schedule[active_blk][0], day_schedule[active_blk][1], day_schedule[active_blk][2], today_seconds);
//for(int i = 0; i < 12; i++) {
// ESP_LOGI("info", "holiday: {%d, %d}", id(holidays)[i][0], id(holidays)[i][1]);
//}
- id: get_geyser_mode
parameters:
index: int&
then:
- lambda: |-
auto time_obj = id(time_source).now();
if(time_obj.is_valid()) {
int dayofweek = time_obj.day_of_week;
index = id(is_school_holiday).state ? ${GM_SCHOOL_HOLIDAY} : id(is_public_holiday).state ? ${GM_PUBLIC_HOLIDAY} : (dayofweek == 1) ? ${GM_SUNDAY} : (dayofweek == 7) ? ${GM_SATURDAY} : ${GM_WORKDAY};
}
else {
index = ${GM_WORKDAY}; // default
}
- id: set_active_heating_timers
then:
- lambda: |-
id(calc_geyser_heating_values).execute(id(active_schedule_temperature));
id(active_heating_time) = id(estimated_heating_time);
// set heating start and end
auto schedule_start = id(active_schedule_period)[0];
auto schedule_end = id(active_schedule_period)[1];
if(schedule_end > schedule_start) {
// normal heating period
id(active_heating_start) = schedule_start;
id(active_heating_end) = schedule_end;
}
else {
// target temperature period
id(active_heating_start) = schedule_start - (id(active_heating_time) > 0 ? id(active_heating_time) : 0); // start heating the estimated heating time before scheduled start time
id(active_heating_end) = schedule_start; // move end to start time
}
- id: set_heat_indicators
then:
- lambda: |-
double temp_top = id(geyser_top_temperature).state;
double temp_bottom = id(geyser_bottom_temperature).state;
float led_blue = 0;
float led_green = 0;
float led_yellow = 0;
float led_red = 0;
float led_on = 0.75;
float brightness = 0;
if(temp_bottom < 40) {
brightness = 0.1*(40 - temp_bottom);
led_blue = brightness > 1 ? 1 : brightness; // blue
if(temp_top >= 60) {
brightness = 0.1*(temp_top - 60);
led_red = brightness > 1 ? 1 : brightness; // red
led_yellow = 1;
led_green = 1;
} else if(temp_top >= 50) {
led_yellow = 0.1*(temp_top - 50); // yellow
led_green = 1;
} else if(temp_top >= 40) {
led_green = 0.1*(temp_top - 40); // green
}
}
else if(temp_bottom >= 40 && temp_bottom < 50) {
led_green = 0.1*(50 - temp_bottom); // green
if(temp_top >= 60) {
brightness = 0.1*(temp_top - 60);
led_red = brightness > 1 ? 1 : brightness; // red
led_yellow = 1;
} else if(temp_top >= 50) {
led_yellow = 0.1*(temp_top - 50); // yellow
}
}
else if(temp_bottom >= 50 && temp_bottom < 60) {
led_yellow = 0.1*(60 - temp_bottom); // yellow
if(temp_top >= 60) {
brightness = 0.1*(temp_top - 60);
led_red = brightness > 1 ? 1 : brightness; // red
}
}
else if(temp_bottom > 60) {
double max_temp = (temp_top > temp_bottom) ? temp_top : temp_bottom; // in case there is something wrong with top temp sensor
brightness = 0.1*(max_temp - 60); // red
led_red = brightness > 1 ? 1 : brightness; // red
}
if(temp_top >= 60) {
double max_temp = (temp_top > temp_bottom) ? temp_top : temp_bottom; // in case there is something wrong with top temp sensor
brightness = 0.1*(max_temp - 60); // red
led_red = brightness > 1 ? 1 : brightness; // red
}
led_blue *= led_on;
led_green *= led_on;
led_yellow *= led_on;
led_red *= led_on;
id(led_geyser_temp_blue).set_level(led_blue);
id(led_geyser_temp_green).set_level(led_green);
id(led_geyser_temp_yellow).set_level(led_yellow);
id(led_geyser_temp_red).set_level(led_red);
//ESP_LOGI("info", "top: %f, bot: %f, Brightness: led_blue %f, led_green: %f, led_yellow, %f, led_red %f", temp_top, temp_bottom, led_blue, led_green, led_yellow, led_red);
- id: set_geyser_relay
then:
- if:
condition:
lambda: "return id(inverter_battery_charge_state).state || id(battery_soc).state < 60 ;"
then:
- light.turn_on:
id: light_inverter_battery_low
brightness: 100%
else:
- light.turn_off:
id: light_inverter_battery_low
- lambda: |-
bool battery_low = id(inverter_battery_charge_state).state || id(battery_soc).state < 60;
ESP_LOGV("info", "----------- inverter_battery_charge_state %d, battery_low %d, battery soc %f, mains_supply %d, mains voltage %f", id(inverter_battery_charge_state).state, battery_low, id(battery_soc).state, id(mains_supply).state, id(mains_voltage_adc).state);
double sun_elevation = id(sun_sensor).elevation();
bool sun_high_enough = sun_elevation >= id(sun_elevation_minimum);
auto currenttime = id(time_source).now();
if(currenttime.is_valid()) {
time_t now = currenttime.timestamp;
bool relay_on = id(geyser_relay).state;
ESP_LOGV("info", "Geyser heating is turned %s.", (relay_on) ? "on" : "off");
if(relay_on) {
// GEYSER IS ENERGISED
// ===================
if(now > id(active_heating_end)) {
// past the scheduled heating end
id(geyser_relay_status) = false;
id(geyser_relay).turn_off();
ESP_LOGI("info", "----------- Past the scheduled heating end at %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
// we will do nothing if water has heated a bit faster than calculated, unless the water is more than 'temp_overshoot_allowed' (0.25) degrees hotter than target temperature
if(id(estimated_heating_overshoot_time) <= 0) {
// we turn geyser off to save energy
id(geyser_relay_status) = false;
ESP_LOGI("info", "----------- Heating done");
}
if(id(inverter1_2_overload).state) {
id(geyser_relay_status) = false;
ESP_LOGI("info", "----------- Overload condition. Temperature: %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
if(battery_low && !id(mains_supply).state) {
// inverter battery is low
id(geyser_relay_status) = false;
ESP_LOGI("info", "----------- Low inverter battery voltage. Temperature: %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
if(!id(mains_supply).state && !sun_high_enough) {
// sun is not high enough above horizon and mains supply is off
id(geyser_relay_status) = false;
ESP_LOGI("info", "----------- No mains and inadequate solar power. Temperature: %f °C. Heating start: %s, end: %s, time: %d, Sun: %f ° elevation", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time), sun_elevation);
}
if(id(geyser_relay_status)) {
// switch off geyser if vacation mode requires it to be switched off
id(vacation_mode_set_geyser_relay).execute(relay_on, sun_high_enough);
}
if(!id(geyser_relay_status)) {
id(geyser_relay).turn_off();
ESP_LOGI("info", "----------- Geyser was turned off at %f °C.", id(geyser_top_temperature).state);
}
}
else {
// GEYSER IS NOT ENERGISED
// =======================
if(id(active_heating_time) <= 0 || now > id(active_heating_end)) {
// no more heat required OR we are past the scheduled heating end
id(geyser_relay_status) = false; // ensure geyser saved state is set to 'off'
}
else {
// heat is required and we are not past the scheduled heating end
if(now >= id(active_heating_start)) {
// we are at or past the scheduled start time for heating
// we will do a few checks to see if it is ok to turn the geyser on
if(id(inverter1_2_overload).state) {
ESP_LOGI("info", "+++++++++++ Geyser not turned on due to overload condition. Temperature: %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
else if(battery_low && !id(mains_supply).state) {
// inverter battery is low
ESP_LOGI("info", "+++++++++++ Geyser not turned on due to low inverter battery voltage. Temperature: %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
else if((!id(mains_supply).state) && !sun_high_enough) {
// sun is not high enough above horizon and mains supply is off
ESP_LOGI("info", "+++++++++++ Geyser not turned on due to no mains and inadequate solar power. Temperature: %f °C. Heating start: %s, end: %s, time: %d, Sun: %f° elevation", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time), sun_elevation);
}
else {
id(geyser_relay_status) = true;
}
if(id(geyser_relay_status)) {
// leave geyser switched off if vacation mode requires it to be switched off
id(vacation_mode_set_geyser_relay).execute(relay_on, sun_high_enough);
}
if(id(geyser_relay_status)) {
id(geyser_relay).turn_on();
ESP_LOGI("info", "+++++++++++ Geyser is turned on at %f °C. Heating start: %s, end: %s, time: %d", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time));
}
}
}
}
}
# set/reset geyser_relay_status variable if vacation mode requires it
- id: vacation_mode_set_geyser_relay
parameters:
relay_on: bool
sun_high_enough: bool
then:
- lambda: |-
if(id(vacation_mode).state) {
// only set/reset geyser_relay_status here if vacation mode is active
if(relay_on) {
double solar_power = id(generated_power).state;
double geyser_power = id(geyser_element_power).state;
// GEYSER IS ENERGISED
// ===================
if(!sun_high_enough) {
id(geyser_relay_status) = false;
ESP_LOGI("info", "+++++++++++ Vacation mode: sun not high enough, geyser to be turned off at %f °C. Heating start: %s, end: %s, time: %d, solar: %f kW", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time), solar_power);
}
else if(solar_power < geyser_power) {
id(geyser_relay_status) = false;
ESP_LOGI("info", "+++++++++++ Vacation mode: not enough solar energy, geyser turned to be off at %f °C. Heating start: %s, end: %s, time: %d, solar: %f kW", id(geyser_top_temperature).state, ESPTime::from_epoch_local(id(active_heating_start)).strftime("%Y-%m-%d %H:%M:%S").c_str(), ESPTime::from_epoch_local(id(active_heating_end)).strftime("%Y-%m-%d %H:%M:%S").c_str(), id(active_heating_time), solar_power);
}
}
else {
// GEYSER IS NOT ENERGISED
// =======================
if(sun_high_enough) {
id(geyser_relay_status) = true;
}
}
}
# calculates effective geyser temp, taking into account both bottom and top geyser temperatures
- id: calc_geyser_heating_values
parameters:
temperature_target: double
then:
- lambda: |-
// estimate expected heat loss
double heat_loss = id(thermal_transmittance) * id(geyser_surface_area) * (id(geyser_top_temperature).state - id(ambient_temperature).state); // in Watts
double heating_power = id(geyser_element_power).state - heat_loss;
id(g_heat_loss) = heat_loss;
id(geyser_effective_power) = (heating_power > 0.0001) ? heating_power : 0.0001; // this is to avoid dividing by zero
// use specific_heat_capacity = 4184 J/kg°C to calculate heating factor, i.e. the number of seconds it will take to heat water by 1 degree
double heating_factor = id(watermass) * 4184 / id(geyser_effective_power);
// set estimated heat required
double geyser_temp_diff = id(geyser_top_temperature).state - id(geyser_bottom_temperature).state - id(geyser_top_bottom_constraint);
double geyser_effective_temperature = (geyser_temp_diff > 0) ? id(geyser_top_temperature).state - geyser_temp_diff : id(geyser_top_temperature).state;
double temperature_diff = temperature_target - geyser_effective_temperature;
// set estimated heating time
double heating_time = heating_factor * temperature_diff; // in Joules
id(estimated_heating_time) = static_cast<int>(heating_time);
double overshoot_period = heating_factor * id(temp_overshoot_allowed);
id(estimated_heating_overshoot_time) = static_cast<int>(overshoot_period + heating_time);
- id: record_heat_gained
then:
- lambda: |-
//ESP_LOGI("info", "Recording heat lost/gained.");
auto currenttime = id(time_source).now();
id(heat_monitor_end) = currenttime.timestamp;
time_t start_time = id(heat_monitor_start);
time_t time_elapsed = id(heat_monitor_end) - start_time;
if(time_elapsed > 0) {
// heat gained measurement
if(start_time > 0) {
double water_temp = id(geyser_top_temperature).state;
double ambient_temp = id(ambient_temperature).state;
double previous_temp = id(last_geyser_top_temperature);
if(isnan(water_temp)) {
ESP_LOGW("warning", "Geyser top temperature is NaN. Skipping heat gain measurement.");
}
else if (previous_temp < -280.0) {
ESP_LOGW("warning", "Geyser previous top temperature (%.2f) is invalid. Restarting heat gain measurement.", previous_temp);
id(start_heat_monitor).execute(water_temp, ambient_temp);
}
else {
double dtemp = water_temp - previous_temp;
double heat_energy_gained = id(watermass) * 4184 * dtemp; // joules
double heat_gain = heat_energy_gained / time_elapsed; // watts
id(g_heat_gained) = heat_gain;
ESP_LOGI("info", "Geyser temperature loss/gain: %.2f°C, time elapsed %d, heat energy gained: %.0fJ, heat gain: %.0fW", dtemp, time_elapsed, heat_energy_gained, heat_gain);
id(start_heat_monitor).execute(water_temp, ambient_temp);
}
}
}
- id: start_heat_monitor
parameters:
water_temp: double
ambient_temp: double
then:
- lambda: |-
//ESP_LOGI("info", "Starting heat loss/gain measurement. A: %.2f, T: %.2f", ambient_temp, water_temp);
auto currenttime = id(time_source).now();
id(heat_monitor_start) = currenttime.timestamp;
if(isnan(water_temp)) {
ESP_LOGW("warning", "Geyser top temperature is NaN. Setting last_geyser_top_temperature to default.");
id(last_geyser_top_temperature) = -301;
}
else {
id(last_geyser_top_temperature) = water_temp;
if(isnan(ambient_temp)) {
ESP_LOGW("warning", "Ambient temperature is NaN. Setting last_temp_diff to default.");
id(last_temp_diff) = -301;
}
else {
id(last_temp_diff) = water_temp - ambient_temp;
}
//ESP_LOGI("info", "Start monitor @ Geyser top temperature: %.2f°C, geyser vs outside: %.2f°C", id(last_geyser_top_temperature), id(last_temp_diff));
}
- id: init_fixed_public_holidays
then:
- lambda: |-
id(fixed_public_holidays)[0][0] = 1; // New Year's Day
id(fixed_public_holidays)[0][1] = 1;
id(fixed_public_holidays)[1][0] = 3; // Human Rights Day
id(fixed_public_holidays)[1][1] = 21;
id(fixed_public_holidays)[2][0] = 4; // Freedom Day
id(fixed_public_holidays)[2][1] = 27;
id(fixed_public_holidays)[3][0] = 5; // Workers Day
id(fixed_public_holidays)[3][1] = 1;
id(fixed_public_holidays)[4][0] = 6; // Youth Day
id(fixed_public_holidays)[4][1] = 16;
id(fixed_public_holidays)[5][0] = 8; // Womens Day
id(fixed_public_holidays)[5][1] = 9;
id(fixed_public_holidays)[6][0] = 9; // Heritage Day
id(fixed_public_holidays)[6][1] = 24;
id(fixed_public_holidays)[7][0] = 12; // Reconciliation Day
id(fixed_public_holidays)[7][1] = 16;
id(fixed_public_holidays)[8][0] = 12; // Christmas Day
id(fixed_public_holidays)[8][1] = 25;
id(fixed_public_holidays)[9][0] = 12; // Boxing Day
id(fixed_public_holidays)[9][1] = 26;
- id: init_schedule
then:
- lambda: |-
// SUNDAYS
int i = ${GM_SUNDAY};
int j = 0;
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 0, 7); // IDLE
id(set_schedule_block).execute(i, j++, ${HEATING_WARM}, 7, 8); // EARLY MORNING
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 8, 9); // MORNING
id(set_schedule_block).execute(i, j++, ${HEATING_LUKE_WARM}, 9, ${LATE_MORNING_END}); // LATE MORNING
id(set_schedule_block).execute(i, j++, ${HEATING_HOT}, ${LATE_MORNING_END}, 16); // MAIN HEAT (THERMOSTAT CONTROL)
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 16, 28.5); // IDLE (28.5 = 4:30AM next day)
// WEEKDAYS
i = ${GM_WORKDAY};
j = 0;
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 0, 4.5);
id(set_schedule_block).execute(i, j++, ${HEATING_WARM}, 4.5, 6);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 6, 9);
id(set_schedule_block).execute(i, j++, ${HEATING_LUKE_WARM}, 9, ${LATE_MORNING_END});
id(set_schedule_block).execute(i, j++, ${HEATING_HOT}, ${LATE_MORNING_END}, 16);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 16, 28.5);
// SATURDAYS
i = ${GM_SATURDAY};
j = 0;
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 0, 7);
id(set_schedule_block).execute(i, j++, ${HEATING_WARM}, 7, 8);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 8, 9);
id(set_schedule_block).execute(i, j++, ${HEATING_LUKE_WARM}, 9, ${LATE_MORNING_END});
id(set_schedule_block).execute(i, j++, ${HEATING_HOT}, ${LATE_MORNING_END}, 16);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 16, 31); // (31 = 7AM next day)
// PUBLIC HOLIDAYS
i = ${GM_PUBLIC_HOLIDAY};
j = 0;
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 0, 7);
id(set_schedule_block).execute(i, j++, ${HEATING_WARM}, 7, 8);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 8, 9);
id(set_schedule_block).execute(i, j++, ${HEATING_LUKE_WARM}, 9, ${LATE_MORNING_END});
id(set_schedule_block).execute(i, j++, ${HEATING_HOT}, ${LATE_MORNING_END}, 16);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 16, 31);
// SCHOOL HOLIDAYS
i = ${GM_SCHOOL_HOLIDAY};
j = 0;
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 0, 7);
id(set_schedule_block).execute(i, j++, ${HEATING_WARM}, 7, 8);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 8, 9);
id(set_schedule_block).execute(i, j++, ${HEATING_LUKE_WARM}, 9, ${LATE_MORNING_END});
id(set_schedule_block).execute(i, j++, ${HEATING_HOT}, ${LATE_MORNING_END}, 16);
id(set_schedule_block).execute(i, j++, ${HEATING_IDLE}, 16, 31);
- id: set_schedule_block
parameters:
day_idx: uint
block_idx: uint
temperature: float
start_time: float
end_time: float
then:
- lambda: |-
if(day_idx < 0 || day_idx > ${GEYSER_MODES}) {
ESP_LOGW("Set Schedule", "day index of %d is out of bounds. Allowed values: 0 to %d.", day_idx, ${GEYSER_MODES});
return;
}
if(block_idx < 0 || block_idx > ${HEATING_DAY_BLOCKS}) {
ESP_LOGW("Set Schedule", "block index of %d is out of bounds. Allowed values: 0 to %d.", block_idx, ${HEATING_DAY_BLOCKS});
return;
}
id(g_schedule)[day_idx][block_idx][0] = static_cast<int>(temperature * ${HEATING_TEMP_SCALE});
id(g_schedule)[day_idx][block_idx][1] = static_cast<int>(start_time * 3600);
id(g_schedule)[day_idx][block_idx][2] = static_cast<int>(end_time * 3600);
// ESP_LOGI("SCHEDULE", "// %.2f, %d, (%.2f), %d (%.2f)", temperature, id(g_schedule)[day_idx][block_idx][1], start_time, id(g_schedule)[day_idx][block_idx][2], end_time);
// ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][0] = %d;", day_idx, block_idx, id(g_schedule)[day_idx][block_idx][0]);
// ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][1] = %d;", day_idx, block_idx, id(g_schedule)[day_idx][block_idx][1]);
// ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][2] = %d;\n", day_idx, block_idx, id(g_schedule)[day_idx][block_idx][2]);
- id: show_schedule
then:
- lambda: |-
for(int d = 0; d < ${GEYSER_MODES}; d++) {
for(int b = 0; b < ${HEATING_DAY_BLOCKS}; b++) {
int t = id(g_schedule)[d][b][0];
int s = id(g_schedule)[d][b][1];
int e = id(g_schedule)[d][b][2];
float temp = static_cast<float>(t) / ${HEATING_TEMP_SCALE};
float start_time = static_cast<float>(s) / 3600;
float end_time = static_cast<float>(e) / 3600;
ESP_LOGI("SCHEDULE", "// %.1f°C, %d, (%.2f), %d (%.2f)", temp, s, start_time, e, end_time);
ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][0] = %d;", d, b, t);
ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][1] = %d;", d, b, s);
ESP_LOGI("SCHEDULE", "id(g_schedule)[%d][%d][2] = %d;\n", d, b, e);
}
}
# here we add Easter to public holidays
- id: init_holidays
then:
- lambda: |-
// calculate easter first
#include <cmath>
auto today = id(time_source).now();
today.second = 0;
today.minute = 0;
today.hour = 0;
auto year = today.year;
auto datevalue = fmod(19*fmod(year,19)+trunc(year/100)-trunc(year/400)-trunc((trunc(year/100)-trunc((8+year/100)/25)+1)/3)+15,30)+fmod(32+2*fmod(trunc(year/100),4)+2*trunc(fmod(year,100)/4)-fmod(19*fmod(year,19)+trunc(year/100)-trunc(year/400)-trunc((trunc(year/100)-trunc((8+year/100)/25)+1)/3)+15,30)-fmod(year,4),7)-7*trunc((fmod(year,19)+11*fmod(19*fmod(year,19)+trunc(year/100)-trunc(year/400)-trunc((trunc(year/100)-trunc((8+year/100)/25)+1)/3)+15,30)+22*fmod(32+2*fmod(trunc(year/100),4)+2*trunc(fmod(year,100)/4)-fmod(19*fmod(year,19)+trunc(year/100)-trunc(year/400)-trunc((trunc(year/100)-trunc((8+year/100)/25)+1)/3)+15,30)-fmod(year,4),7))/451)+114;
today.month = trunc(datevalue/31);
today.day_of_month = 1+fmod(datevalue,31);
today.recalc_timestamp_local();
auto time_obj = ESPTime::from_epoch_local(today.timestamp - 2*86400); // Good Friday
int i = 0;
id(public_holidays)[i][0] = time_obj.month;
id(public_holidays)[i][1] = time_obj.day_of_month;
//ESP_LOGI("info", "======== Set holiday h_idx:%d, %d-%d-%d [%d]", i, time_obj.year, time_obj.month, time_obj.day_of_month, time_obj.day_of_week);
time_obj = ESPTime::from_epoch_local(today.timestamp + 86400); // Easter Monday
i++;
id(public_holidays)[i][0] = time_obj.month;
id(public_holidays)[i][1] = time_obj.day_of_month;
//ESP_LOGI("info", "======== Set holiday h_idx:%d, %d-%d-%d [%d]", i, time_obj.year, time_obj.month, time_obj.day_of_month, time_obj.day_of_week);
// do rest of public holidays
int j = 0; // fixed_public_holidays array index
while(j < 10) {
++i;
time_obj.year = year;
time_obj.month = id(fixed_public_holidays)[j][0];
time_obj.day_of_month = id(fixed_public_holidays)[j][1];
time_obj.recalc_timestamp_local();
auto holiday = ESPTime::from_epoch_local(time_obj.timestamp); // we need a new struct as the time_obj does not update day_of_week from here onwards (don't know why)
bool isBoxingDay = (holiday.month == 12) && (holiday.day_of_month == 26);
if(holiday.day_of_week == 1) { // if Sunday
holiday.increment_day(); // then Monday is also public holiday
holiday.recalc_timestamp_local();
//ESP_LOGI("info", "======== Monday is also public holiday if public holiday falls on a Sunday. h_idx:%d, fh_idx:%d, %d-%d-%d [%d]", i, j, holiday.year, holiday.month, holiday.day_of_month, holiday.day_of_week);
}
else {
if(isBoxingDay && holiday.day_of_week == 2) {
holiday.increment_day(); // then if President so decides, Tuesday is usually also public holiday
holiday.recalc_timestamp_local();
//ESP_LOGI("info", "======== Boxing Day falls on a Monday so Tuesday is also public holiday. h_idx:%d, fh_idx:%d, %d-%d-%d [%d]", i, j, holiday.year, holiday.month, holiday.day_of_month, holiday.day_of_week);
}
}
holiday.recalc_timestamp_local();
id(public_holidays)[i][0] = holiday.month;
id(public_holidays)[i][1] = holiday.day_of_month;
holiday.recalc_timestamp_local();
//ESP_LOGI("info", "======== Set holiday h_idx:%d, fh_idx:%d, %d-%d-%d [%d]", i, j, holiday.year, holiday.month, holiday.day_of_month, holiday.day_of_week);
j++;
}
- id: canbus_add_to_queue
parameters:
can_id_set: std::set<uint32_t>&
max_requests: int
then:
lambda: |-
if(!can_id_set.empty()) {
// check how many times can_ids are queued already
auto qcpy = id(g_cb_request_queue);
std::map<uint32_t, int> request_counts;
while (!qcpy.empty()) {
auto& cid_set = qcpy.front();
for(auto& can_id : can_id_set) {
if(cid_set.contains(can_id)) {
const auto& ret = request_counts.emplace(can_id, 1);
if(!ret.second) {
auto& kvp = *ret.first;
kvp.second++;
}
}
}
qcpy.pop();
}
std::set<uint32_t> newset;
// re-insert only those can-ids into newset that are queued less than max_requests times
for(const auto& kvp : request_counts) {
const auto& count = kvp.second;
if(count <= max_requests) {
newset.insert(kvp.first);
}
//else {
// ESP_LOGI("request_counts", "CAN_ID 0x%X, COUNT: %d not inserted!", kvp.first, count);
//}
}
// insert newset at the back of the queue with can_id request counts < max_requests
id(g_cb_request_queue).push(newset);
}
- id: canbus_send_heartbeat
then:
lambda: |-
using namespace solar;
std::vector<uint8_t> x(cbf_sthome::heartbeat.begin(), cbf_sthome::heartbeat.end());
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_CANBUS_ID08, x);
# this one has a success output parameter, which will determine whether the frame should be resent later
- id: canbus_send_temperature_top
parameters:
success: bool&
then:
lambda: |-
using namespace solar;
auto temperature = id(geyser_top_temperature).raw_state;
success = !isnan(temperature);
if(success) {
auto x = cb_frame::get_byte_stream(temperature, -256);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_GEYSER_TEMPERATURE_TOP, x);
}
# this one has a success output parameter, which will determine whether the frame should be resent later
- id: canbus_send_temperature_bottom
parameters:
success: bool&
then:
lambda: |-
using namespace solar;
auto temperature = id(geyser_bottom_temperature).raw_state;
success = !isnan(temperature);
if(success) {
auto x = cb_frame::get_byte_stream(temperature, -256);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_GEYSER_TEMPERATURE_BOTTOM, x);
}
# this one has a success output parameter, which will determine whether the frame should be resent later
- id: canbus_send_temperature_ambient
parameters:
success: bool&
then:
lambda: |-
using namespace solar;
auto temperature = id(ambient_temperature).raw_state;
success = !isnan(temperature);
if(success) {
auto x = cb_frame::get_byte_stream(temperature, -256);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_GEYSER_TEMPERATURE_AMBIENT, x);
}
- id: canbus_send_geyser_heating
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(heating_loss).state, -64, id(heat_gained).state, 128, id(calculated_heat_loss).state, 128, id(estimated_heating_time), 1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_GEYSER_HEATING, x);
- id: canbus_send_geyser_active_schedule
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(active_schedule_temp).state, -256, id(active_heating_time), -1, id(estimated_heating_overshoot_time), -64, id(active_schedule_day).state, 1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_GEYSER_ACTIVE_SCHEDULE, x);
- id: canbus_send_power_mains
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(mains_power).state, 2048, id(mains_voltage_adc).state, 128, id(mains_current).state, 512);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_MAINS, x);
- id: canbus_send_power_inverter
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(total_inverter_output).state, 2048, id(inverter_output_voltage_adc).state, 128, id(inverter1_2_output_current).state, 512);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_INVERTER, x);
- id: canbus_send_power_plugs
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(power_outlets_power).state, 2048, id(inverter_output_voltage_adc).state, 128, id(power_outlets_current).state, 512);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_PLUGS, x);
- id: canbus_send_power_lights
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(lights_power).state, 2048, id(inverter_output_voltage_adc).state, 128, id(lights_current).state, 512);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_LIGHTS, x);
- id: canbus_send_power_geyser
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(geyser_power).state, 2048, id(inverter_output_voltage_adc).state, 128, id(geyser_current).state, 512);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_GEYSER, x);
# - id: canbus_send_power_pool
# then:
# lambda: |-
# using namespace solar;
# auto x = cb_frame::get_byte_stream(id(pool_power).state, 2048, id(inverter_output_voltage_adc).state, 128, id(pool_current).state, 512);
# id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_POOL, x);
- id: canbus_send_power_generated
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(generated_power).state, 2048, id(power_loss).state, 2048);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_POWER_GENERATED, x);
- id: canbus_send_controller_states
then:
lambda: |-
using namespace solar;
std::vector<uint8_t> byte_stream(3, 0);
uint8_t& alarms = byte_stream[0];
uint8_t& states = byte_stream[1];
uint8_t& modes = byte_stream[2];
int geysermode = 0;
id(get_geyser_mode).execute(geysermode);
alarms = ((id(inverter_battery_charge_state).state) ? 0x80 : 0) | ((id(inverter1_2_overload).state) ? 0x08 : 0);
states = ((id(geyser_heating).state) ? 0x80 : 0) | ((id(geyser_relay).state) ? 0x40 : 0) | ((id(mains_supply).state) ? 0x20 : 0) | ((id(battery_charging).state) ? 0x08 : 0);
modes = ((id(vacation_mode).state) ? 0x80 : 0) | ((geysermode << 4) & 0x70);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_CONTROLLER_STATES, byte_stream);
- id: canbus_send_energy_mains
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_mains_energy).state, 512, id(monthly_mains_energy).state, 32, id(yearly_mains_energy).state, 2, id(mains_energy).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_MAINS, x);
- id: canbus_send_energy_geyser
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_geyser_energy).state, 512, id(monthly_geyser_energy).state, 32, id(yearly_geyser_energy).state, 2, id(geyser_energy).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_GEYSER, x);
# - id: canbus_send_energy_pool
# then:
# lambda: |-
# using namespace solar;
# auto x = cb_frame::get_byte_stream(id(daily_pool_energy).state, 512, id(monthly_pool_energy).state, 32, id(yearly_pool_energy).state, 2, id(pool_energy).state, 0.1);
# id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_POOL, x);
- id: canbus_send_energy_plugs
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_plugs_energy).state, 512, id(monthly_plugs_energy).state, 32, id(yearly_plugs_energy).state, 2, id(plugs_energy).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_PLUGS, x);
- id: canbus_send_energy_lights
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_lights_energy).state, 512, id(monthly_lights_energy).state, 32, id(yearly_lights_energy).state, 2, id(lights_energy).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_LIGHTS, x);
- id: canbus_send_energy_house
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_house_energy_usage).state, 512, id(monthly_house_energy_usage).state, 32, id(yearly_house_energy_usage).state, 2, id(house_energy_usage).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_HOUSE, x);
- id: canbus_send_energy_generated
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_generated_energy).state, 512, id(monthly_generated_energy).state, 32, id(yearly_generated_energy).state, 2, id(generated_energy).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_GENERATED, x);
- id: canbus_send_energy_loss
then:
lambda: |-
using namespace solar;
auto x = cb_frame::get_byte_stream(id(daily_energy_loss).state, 512, id(monthly_energy_loss).state, 32, id(yearly_energy_loss).state, 2, id(energy_loss).state, 0.1);
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_sthome::CB_ENERGY_LOSS, x);
- id: canbus_send_battery_limits
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_LIMITS);
- id: canbus_send_battery_state
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_STATE);
- id: canbus_send_battery_status
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_STATUS);
- id: canbus_send_battery_fault
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_FAULT);
- id: canbus_send_battery_request_flags
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_REQUEST_FLAGS);
- id: canbus_send_battery_manufacturer
then:
lambda: |-
using namespace solar;
id(g_cb_cache).send_frame(id(canbus_sthome), cbf_pylon::CB_BATTERY_MANUFACTURER);
# Geyser HEATING Calculations
# HEAT LOSS
# The primary formula for calculating heat loss in a water heater is Q = U x A x ΔT, where:
# Q: is the heat loss (in Watts, BTU/hr, etc.)
# U: is the U-value (thermal transmittance) of the heater's insulation (in W/m²°C or BTU/hr ft²°F).
# A: is the surface area of the water heater (in m² or ft²).
# ΔT: is the temperature difference between the water inside the heater and the ambient temperature outside (in °C or °F).
#
# HEAT REQUIRED
# Heat Required in Joules (Q) = m * ΔT * c where:
# m = mass of water in kg
# ΔT = temperature difference in °C
# c = specific heat capacity (water = 4184 J/kg°C).
#
# HEATING TIME
# Heating Time in seconds (t) = Q / W where:
# Q = heat required in Joules
# W = power in Watts of heating element
#
###############################################################################################################
# Alternative ADS1115 sensor
#sensor:
#ads1115_48
# Sensor will convert ADC output to Current without need for ct_clamp platform sensor
# - platform: ads1115
# multiplexer: 'A0_A1'
# gain: 1.024
# name: "Geyser Element Current"
# ads1115_id: ads1115_48
# update_interval: 0ms #24ms
# id: geyser_element_current_real
# state_class: measurement
# device_class: current
# unit_of_measurement: "A"
# icon: "mdi:flash"
# accuracy_decimals: 8
# filters:
# # Calculates RMS voltage sampled by the ADS1115 ADC
# - lambda: return x * x; ####
# - sliding_window_moving_average: #
# window_size: 2500 # averages over 2500 update intervals
# send_every: 1250 # reports every 1250 update intervals
# - lambda: return sqrt(x); ####
# - multiply: 88.2 # Map measured voltage from CT clamp to current in the primary circuit
# CT CLAMP calculations
# Burden Resistor (ohms) = (VREF * CT TURNS) / (√2 * max primary current)
# Primary Current (A) = secondary voltage * CT TURNS / (√2 * burden resistor)
# CT TURNS = primary current * burden resistor / secondary voltage
# Multiplier = CT TURNS / burden resistor (other surrounding circuitry impacts this value)
# for use with latching relay
# - platform: template
# id: geyser_relay_failures
# name: "Geyser Relay Failures"
# icon: mdi:flash
# accuracy_decimals: 0
# unit_of_measurement: ""
# lambda: |-
# auto failcount = id(geyser_relay_fail_count);
# if(failcount > 0) {
# id(geyser_relay_fail).turn_on();
# }
# else {
# id(geyser_relay_fail).turn_off();
# }
# return failcount;
# update_interval: 10s
#
# for Benchwork
# - platform: template
# name: "Geyser Top Temperature"
# id: geyser_top_temperature
# update_interval: "30s"
# unit_of_measurement: "°C"
# icon: "mdi:water-thermometer"
# device_class: "temperature"
# state_class: "measurement"
# accuracy_decimals: 1
# lambda: |-
# return 60.5114;
#
# - platform: template
# name: "Geyser Bottom Temperature"
# id: geyser_bottom_temperature
# update_interval: "30s"
# unit_of_measurement: "°C"
# icon: "mdi:water-thermometer"
# device_class: "temperature"
# state_class: "measurement"
# accuracy_decimals: 1
# lambda: |-
# return 31.2455;
#
# - platform: template
# name: "Ambient Temperature"
# id: ambient_temperature
# update_interval: "30s"
# unit_of_measurement: "°C"
# icon: "mdi:water-thermometer"
# device_class: "temperature"
# state_class: "measurement"
# accuracy_decimals: 1
# lambda: |-
# return 20.1234;
# end of for Benchwork
#
# script:
# - id: update_power_counters
# then:
# - lambda: |-
# if(id(time_synched)) {
# // power counters
# auto time_obj = id(time_source).now();
# time_obj.recalc_timestamp_local();
# int day_of_week = time_obj.day_of_week;
# time_t end_time = static_cast<time_t >(time_obj.timestamp);
# time_t start_time = static_cast<time_t >(id(timer_start));
# double time_elapsed = static_cast<double>(end_time - start_time);
# id(validate_energy_values).execute(day_of_week);
# if(start_time > 0) {
# id(do_power_counters_update).execute(day_of_week, time_elapsed);
# }
# id(timer_start) = end_time;
# }
#
# - id: init_daily_power_counters
# then:
# - lambda: |-
# auto currenttime = id(time_source).now();
# int day_of_week = currenttime.day_of_week;
# id(geyser_energy_daily)[day_of_week-1] = 0.0; // reset
# id(power_outlets_energy_daily)[day_of_week-1] = 0.0; // reset
# id(mains_energy_daily)[day_of_week-1] = 0.0; // reset
# id(generated_energy_daily)[day_of_week-1] = 0.0; // reset
# id(energy_loss_daily)[day_of_week-1] = 0.0; // reset
#
# - id: init_monthly_power_counters
# then:
# - lambda: |-
# //auto currenttime = id(time_source).now();
# //int day_of_week = currenttime.day_of_week;
# id(geyser_energy) = 0.0; // reset
# id(power_outlets_energy) = 0.0; // reset
# id(mains_energy) = 0.0; // reset
# id(generated_energy) = 0.0; // reset
# id(energy_loss) = 0.0; // reset
#
# - id: do_power_counters_update
# parameters:
# day_of_week: int
# time_elapsed: double
# then:
# - lambda: |-
# double power = id(geyser_power).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Geyser power is NaN. Skipping geyser power counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(geyser_energy_daily)[day_of_week-1] += energy;
# id(geyser_energy) += energy;
# id(house_energy_usage) += energy;
# }
# power = id(power_outlets_power).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Plugs Power is NaN. Skipping Plugs Power counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(power_outlets_energy_daily)[day_of_week-1] += energy;
# id(power_outlets_energy) += energy;
# id(house_energy_usage) += energy;
# }
# power = id(mains_power).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Mains power is NaN. Skipping mains power counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(mains_energy_daily)[day_of_week-1] += energy;
# id(mains_energy) += energy;
# }
# power = id(lights_power).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Lights power is NaN. Skipping lights power counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(lights_energy_daily)[day_of_week-1] += energy;
# id(lights_energy) += energy;
# id(house_energy_usage) += energy;
# }
# power = id(generated_power).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Generated power is NaN. Skipping generated power counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(generated_energy_daily)[day_of_week-1] += energy;
# id(generated_energy) += energy;
# //ESP_LOGI("info", "Generated energy: %f kWs. Total: %f kWh", energy, id(generated_energy)/3600.0);
# }
# power = id(power_loss).state;
# if(isnan(power)) {
# ESP_LOGW("warning", "Energy loss is NaN. Skipping energy loss counters update.");
# }
# else {
# double energy = time_elapsed * power;
# id(energy_loss_daily)[day_of_week-1] += energy;
# id(energy_loss) += energy;
# }
# - id: validate_energy_values
# parameters:
# day_of_week: int
# then:
# - lambda: |-
# if(isnan(id(geyser_energy_daily)[day_of_week-1])) {
# ESP_LOGW("warning", "Geyser Energy Usage for day %d is NaN. Value was reset to zero.", day_of_week);
# id(geyser_energy_daily)[day_of_week-1] = 0;
# }
# if(isnan(id(power_outlets_energy_daily)[day_of_week-1])) {
# ESP_LOGW("warning", "Plugs Energy Usage for day %d is NaN. Value was reset to zero.", day_of_week);
# id(power_outlets_energy_daily)[day_of_week-1] = 0;
# }
# if(isnan(id(mains_energy_daily)[day_of_week-1])) {
# ESP_LOGW("warning", "Mains Energy Usage for day %d is NaN. Value was reset to zero.", day_of_week);
# id(mains_energy_daily)[day_of_week-1] = 0;
# }
# if(isnan(id(lights_energy_daily)[day_of_week-1])) {
# ESP_LOGW("warning", "Lights Energy Usage for day %d is NaN. Value was reset to zero.", day_of_week);
# id(lights_energy_daily)[day_of_week-1] = 0;
# }
# if(isnan(id(generated_energy_daily)[day_of_week-1])) {
# ESP_LOGW("warning", "Generated Energy Usage for day %d is NaN. Value was reset to zero.", day_of_week);
# id(generated_energy_daily)[day_of_week-1] = 0;
# }
# if(isnan(id(geyser_energy))) {
# ESP_LOGW("warning", "Geyser Energy is NaN. Value was reset to zero.");
# id(geyser_energy) = 0;
# }
# if(isnan(id(power_outlets_energy))) {
# ESP_LOGW("warning", "Plugs Energy is NaN. Value was reset to zero.");
# id(power_outlets_energy) = 0;
# }
# if(isnan(id(mains_energy))) {
# ESP_LOGW("warning", "Mains Energy is NaN. Value was reset to zero.");
# id(mains_energy) = 0;
# }
# if(isnan(id(lights_energy))) {
# ESP_LOGW("warning", "Lights Energy is NaN. Value was reset to zero.");
# id(lights_energy) = 0;
# }
# if(isnan(id(generated_energy))) {
# ESP_LOGW("warning", "Generated Energy is NaN. Value was reset to zero.");
# id(generated_energy) = 0;
# }